import numpy as np
class LinearRegression:
def __int__(self):
'''初始化lineargression 模型参数'''
self.coef_ = None
self.intercept_ = None
self._theta = None
def fit_normal(self, X_train, y_train):
'''根据训练集训练模型'''
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
self._theta = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
return self
def fit_gd(self, X_train, y_trian, eta=0.1, n_iters=1e4):
'''使用梯度下降法训练Linear Regression模型'''
assert X_train.shape[0] == y_trian.shape[0], \
"the size of X_train must be equal to the size of y_train"
def J(theta, X_b, y):
try:
return np.sum((y - X_b.dot(theta)) ** 2) / len(y)
except:
return float('inf')
def dJ(theta, X_b, y):
return X_b.T.dot(X_b.dot(theta) - y) * 2 / len(y)
def gradient_descent(X_b, y, initial_theta, eta, n_iters=1e4, epsilon=1e-8):
theta = initial_theta
n_iter = 0
while n_iter <= n_iters:
gradient = dJ(theta, X_b, y)
last_theta = theta
theta = theta - eta * gradient
if (abs(J(theta, X_b, y) - J(last_theta, X_b, y)) < epsilon):
break
n_iter += 1
return theta
X_b = np.hstack([np.ones((len(X_train), 1)), X_train])
initial_theta = np.zeros(X_b.shape[1])
eta = 0.01
self._theta = gradient_descent(X_b, y_trian, initial_theta, eta)
self.intercept_ = self._theta[0]
self.coef_ = self._theta[1:]
def predcit(self, X_predict):
'''给定向量集预测数据,返回预测后的矩阵'''
assert self.intercept_ is not None and self.coef_ is not None, \
"must fit before predict"
assert X_predict.shape[1] == len(self.coef_), \
"the feature number of X_predict must be equal to X_train"
X_b = np.hstack([np.ones((len(X_predict), 1)), X_predict])
return X_b.dot(self._theta)
def score(self, X_test, y_test):
'''判断模型准确度'''
y_predict = self.predcit(X_test)
return 1 - (np.sum((y_predict - y_test) ** 2) / len(y_test)) / np.var(y_test)
def __repr__(self):
return 'LinearRegression'