获取卷积神经网络模型参数个数(总参数、可训练参数、非训练参数)

本文档展示了如何使用TensorFlow计算模型的总参数数、可训练参数数和非训练参数数,以ResNet101V2为例,通过代码实例解析了模型结构的参数分布情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直接上程序。

import tensorflow as tf
import numpy

def parameters_count(_model):
    total_count = _model.count_params()
    trainable_count = numpy.sum([tf.keras.backend.count_params(w) for w in _model.trainable_weights])
    non_trainable_count = numpy.sum([tf.keras.backend.count_params(w) for w in _model.non_trainable_weights])
    return total_count, trainable_count, non_trainable_count

举例如下:

model = tf.keras.applications.resnet_v2.ResNet101V2(include_top=False)

parameters_count(model)

打印出来的结果:(42626560, 42528896, 97664)

模型总参数、可训练参数、非训练参数分别为42626560、42528896和97664

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

John H.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值