一、向量数据库milvus安装
前提:安装了docker和docker-compose
1.网盘下载下面的文件
链接:https://pan.baidu.com/s/1rNjAUvzo7MlShSR6Y9n47A?pwd=ompv
提取码:ompv
2.将milvas.yaml放到configs目录下
3.进入到安装目录执行docker-compose up -d
4.访问http://119.29.230.249:8000/?#/connect
5.用户名:root、密码:Milvus
二、安装bert-as-service
下载anaconda3
链接:https://pan.baidu.com/s/1co7aYprMyf4jNCqch6F0DQ?pwd=4lza
提取码:4lza
1.安装anaconda3
# 安装anaconda3
bash Anaconda3-5.2.0-Linux-x86_64.sh
# 添加环境变量
export PATH="/root/anaconda3/bin:$PATH"
source ~/.bashrc
# 查看conda信息
conda info
# 修改/root/.condarc
vim /root/.condarc
# conda内容
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
2.创建虚拟环境,取名叫python36,方便多版本python管理
conda create -n python36 python=3.6
3.激活环境
source activate python36
4.tensorflow安装
pip install tensorflow==1.11.0
5.安装bert-as-service
pip install bert-serving-server
pip install bert-serving-client
6.安装完成之后,下载bert的预训练语言模型,我主要处理中文,因此下载中文版本的预训练语言模型
链接:https://pan.baidu.com/s/1hZIzOiWW6PtMuhKtrId_iQ?pwd=t4o5
提取码:t4o5
7.解压zip包
unzip ./tmp/chinese_L-12_H-768_A-12
8.启动服务
nohup bert-serving-start -model_dir ./tmp/chinese_L-12_H-768_A-12 -num_worker=1 -max_seq_len=10 &