自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(112)
  • 收藏
  • 关注

原创 微分方程(Blanchard Differential Equations 4th)-补充习题01

y′axyx″4xtcos⁡2tX′AXX′AXFxdtdx​fxy)dtdy​gxy)dtdx​0xxyX′AXTrA)detA)dxdy​y1​y′′ω2y0λα±iβα′3y0?A. yCe−3t;B. yCe3t;C. yCt3;D. yCe−3t′ptygtis:A. e∫ptdt;

2025-02-16 10:28:54 131

原创 2025春季NC:3.4 Composite integration rules

梯形法则:112b−aM2121​b−aM2​复合梯形法则:112h2b−aM2121​h2b−aM2​辛普森法则:12880b−aM428801​b−aM4​复合辛普森法则:1180h4b−aM41801​h4b−aM4​请注意,我们在辛普森法则的误差界限中使用的是b−ab - ab−a,而不是hb−a2h2b−a​。

2025-05-11 22:24:35 34

原创 2025春季NC:3.2Simpson公式

辛普森公式是一种数值积分方法,通过选取三个点(两端点和中点)来近似计算定积分。其公式为 $\int_a^b f(x) , dx \approx \frac{h}{3} \left( f(x_0) + 4f(x_1) + f(x_2) \right)$,其中 $h = \frac{b - a}{2}$。该公式是牛顿-科特斯法则的特例,适用于二次多项式时能给出精确结果。误差分析表明,对于四阶可导函数,误差与 $h^5$ 成正比,具体为 $E(f) = -\frac{h^5}{90} f^{(4)}(\xi)$。

2025-05-11 22:24:10 39

原创 2025春季NC:2.4 Convergence

我们有一个插值误差的界限。是否可以通过增加更多的插值点或修改这些点的分布来使误差更小?这个问题的答案可能取决于两个因素:所考虑的函数类以及点的分布方式。计算此例的插值误差,结果与之前的例子完全不同。事实上,绘制误差图并将其与等距点的情况进行比较,可以发现,巧妙地选择插值点可以带来巨大的好处。令人惊讶的是,答案是否定的,正如以下著名的例子——龙格现象(Runge Phenomenon)所示。然而,当我们在不同的等距点上对逐渐增大的。问题并非源于插值方法本身,而是与点的分布方式有关。次拉格朗日插值多项式。

2025-04-27 10:33:41 55

原创 2025春季NC:2.3 Newton’s divided differences

一种便捷的表示方式为pxa0​a1​x−x0​⋯an​x−x0​x−xn−1​2.5如果已知系数a0​an​,那么仅需n,可以使用进行高效计算。此外,这种形式的一个优势是,:如果新增一个插值点xn1​,则原有的系数a0​an​。设插值点为x0​−1x1​0x2​1x3​2。那么三次多项式p3​xx3可以按照形式 (2.5) 重新表示为p3​x−1x1x。

2025-04-26 21:02:05 29

原创 2025春季NC:3.1TheTrapeziumRule

fxbetween xaand xbabinto nnb−a​, then:∫ab​fxdx≈2h​fx0​2fx1​2fx2​⋯2fxn−1​fxn​Where:x0​axn​bxi​aihi12...n−102​x21dx42−0​0.5x00.51.01.52.0fx)11.2523.25520.5​12。

2025-04-26 21:00:34 56

原创 2025春季NC:2.2Interpolation Error

现在,我们已经证明了函数的插值多项式的存在性和唯一性,接下来我们希望了解它对原函数的逼近程度。尽管在实际计算中我们无法准确找到这个位置,但情况并不算太糟,因为有时我们可以在区间。,那么拉格朗日插值多项式可能与原始函数看起来非常不同。没有任何额外的假设,这个误差可能是任意的。因此,我们将限制讨论足够平滑的函数。为了证明定理 2.3,我们需要以下罗尔定理的推论。,但它可能有不同的表示形式。中保证一定的精度,插值点的间距必须足够小。处的拉格朗日插值多项式。,存在介于两者之间的某个点使得。那么,我们应选择多大的。

2025-04-23 09:40:49 41

原创 2025春季NC:2.1Interpolation

注意,插值多项式是唯一确定的,但该多项式可以有不同的表示形式。因此,“拉格朗日插值多项式”指的是该多项式的特定形式 (2.3)。接下来,我们将证明这个多项式是唯一确定的。定义的是相同的多项式(可以通过展开右边的项验证),因此两者都表示唯一的插值多项式,经过点。是通过这些点的唯一一次多项式。然后我们将讨论通过插值逼近多项式的质量、收敛性问题,以及其他方法,如牛顿插值。是不同的,否则我们将遇到除零的情况,造成灾难。互不相同,插值问题的目标是找到一个最低次数的多项式。的多项式,特别是常数项,因为我们允许在表示。

2025-04-23 09:39:57 33

原创 2025春季NC:Numerical Error in Floating Point Numbers

in。

2025-04-21 20:03:11 221

原创 2025春季NC:Numerical Error in Floating Point Numbers-Supp

浮点数的真实值 =(-1)^符号位 × 1.尾数 × 2^(指数位 - Bias)很棒的问题!加上偏移量(bias)是浮点数设计中的一个聪明技巧,目的是为了让指数可以用无符号数表示,同时仍能表示正负指数。让我们来详细拆开解释下这个设计的必要性和优点。优点说明✔ 使用无符号存储无需专门设计带符号指数位✔ 便于比较大小浮点数可按位直接比较大小✔ 实现简单高效硬件设计更容易,排序更快✔ 支持负指数可自然表示小于 1 的小数如果没有引入偏移量,我们就得用补码表示指数。

2025-04-21 20:02:26 621

原创 2025春季NC:1.2Accuracy_supp

浮点数的真实值 =(-1)^符号位 × 1.尾数 × 2^(指数位 - Bias)很棒的问题!加上偏移量(bias)是浮点数设计中的一个聪明技巧,目的是为了让指数可以用无符号数表示,同时仍能表示正负指数。让我们来详细拆开解释下这个设计的必要性和优点。优点说明✔ 使用无符号存储无需专门设计带符号指数位✔ 便于比较大小浮点数可按位直接比较大小✔ 实现简单高效硬件设计更容易,排序更快✔ 支持负指数可自然表示小于 1 的小数如果没有引入偏移量,我们就得用补码表示指数。

2025-04-18 10:15:55 712

原创 2025春季NC:1.2Accuracy

为了衡量近似值的质量,我们使用的概念。给定一个数值x和一个计算得出的近似值xEabs​x∣x−x∣而Erel​x∣x∣∣x−x∣​使用相对误差的好处是显而易见的:它们具有。而绝对误差有时可能毫无意义。例如,在曼彻斯特博物馆估算霸王龙的年龄时,误差一个小时无足轻重,但在确定一场讲座的时间时,这却至关重要。这是因为对于前者,一个小时对应的是10−11数量级的相对误差,而对于后者,相对误差则是10−1级别。

2025-04-18 10:14:37 525

原创 2025春季NC:1.1Introduction

我们使用的“计算时间”度量是解决问题所需的基本(浮点)算术运算数量(例如加法、减法、乘法、除法),它是输入大小的函数。一个有趣且具有挑战性的领域是代数复杂度理论,它研究执行某些计算任务所需的算术运算的下界。实际上,我们不需要计算一系列的数值,而是在每一步都覆盖一个变量的值。“由于我们从对数表和三角函数表中取出的数值都不能达到绝对精确,而只能在一定程度上近似,因此,利用这些数值进行的所有计算,其结果也只能是近似正确的。在这里,我们不太关注精确的数字,而更关心的是计算量的级别。的多项式,依此类推。

2025-04-18 09:47:13 927

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-4.2向量的范数

即使我们关心的是在 2-范数下的收敛性,证明序列在 1-范数下收敛可能会更快捷,而一旦证明了这一点,按照上述推论,收敛性在 2-范数下自然也会成立。类似地,可以证明 1-范数和 2-范数之间的关系,以及 1-范数和无穷范数之间的关系。现在我们已经定义了衡量向量之间距离的方法,接下来我们可以讨论收敛性。如果我们想指出收敛是相对于哪种特定的范数进行的,我们有时会写作。分别表示相对于 1-范数、无穷范数和 2-范数的收敛性。,所以我们也能得到在 1-范数下的收敛性。,那么它也在 2-范数下收敛到。

2025-04-15 08:05:03 28

原创 Numerical Computation Schedule NEUQ & AUK

‌Teacher ID‌: 1000556‌Semester‌: Spring 2024-2025‌Print Date‌: April 7, 2025‌Note‌: “Num. Comp.” stands for “Numerical Computation”.

2025-04-07 10:18:25 271

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-3.3数值积分的Runge现象

,数值积分的近似值是负的,这对一个严格为正的函数来说显然是不合理的。原因是某些求积规则中的权重是负数。正如这个例子所示,增加插值多项式的度数并不总是一个有效的选择,因此我们必须考虑其他方法来提高数值积分的精度。特别地,我们可以得出结论:对于多项式的度数不超过一的情况,梯形规则的误差为零(因为对于一阶多项式,对于多项式的度数不超过三的情况,辛普森规则的误差为零(因为对于三阶多项式,这就引发了一个问题:增加插值多项式的度数是否一定能减小积分的误差呢?是辛普森规则的绝对误差,是梯形规则的绝对误差,

2025-04-06 20:44:54 49

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-4.1数值代数方程组求解

在数值分析中,许多问题可以用线性代数来表述。例如,偏微分方程的离散化会导致涉及大型线性方程组的问题。线性代数中的基本问题是求解线性方程组Axb4.1其中A​a11​⋮am1​​⋯⋱⋯​a1n​⋮amn​​​是一个m×n的矩阵,矩阵的元素是实数,且x​x1​⋮xn​​​b​b1​⋮bm​​​是向量。我们通常处理的是mn(即A是一个方阵)的情况。

2025-04-05 21:29:17 66

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-3.4数值积分-复合积分公式

梯形法则:112b−aM2121​b−aM2​复合梯形法则:112h2b−aM2121​h2b−aM2​辛普森法则:12880b−aM428801​b−aM4​复合辛普森法则:1180h4b−aM41801​h4b−aM4​请注意,我们在辛普森法则的误差界限中使用的是b−ab - ab−a,而不是hb−a2h2b−a​。

2025-04-04 23:08:41 103

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-5.4 不动点迭代收敛速度

序列xnx_nxn​(对于n≥0n \geq 0n≥0) 若以一阶收敛(或线性收敛)收敛到α\alphaα∣xn1−α∣≤k∣xn−α∣for some0k1.∣xn1​−α∣≤k∣xn​−α∣for some0k1.如果序列以阶数r≥2r \geq 2r≥2∣xn1−α∣≤k∣xn−α∣rfor somek0.∣xn1​−α∣≤。

2025-03-29 07:50:01 39

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-5.2 牛顿法求解

处几乎水平,这会使得迭代值远离解。另一个问题是,当迭代在两个值之间振荡时,方法无法收敛,例如下面的例子所示。然而,牛顿法并非没有问题。我们可以很容易地找到一些初始点,使得该方法无法收敛。我们可以看到,在仅仅四次迭代之后,牛顿法就比二分法提供了一个更好的近似解。,即新旧迭代值的差小于预定义的容忍度(TOL),则停止迭代。牛顿法的基本思想是通过函数在某一点。,我们需要找到该点的切线的根。小于给定的容忍度,我们停止并声明。依赖于具体的情况,前提是我们从。是可微的,并且我们能够计算出。在每一步中,从当前的。

2025-03-25 09:06:19 51

原创 Answers:Mathematical Modeling-Frank R. Giordano(5-th Version)-10.1Game Theory: Total Conflict

Let’s evaluate:Thus, Colin will always choose C1.Thus, Rose will always choose R1.Let’s evaluate:Thus, Colin will play C1 if he is choosing optimally.Thus, Rose will choose R1.Let’s evaluate:Thus, the Batter is choosing optimally between the two options de

2025-03-14 15:46:59 56

原创 Answers:Mathematical Modeling-Frank R. Giordano(5Version)-1.2Approximating Change with Difference Eq

Let’s go step by step to analyze the sheep population growth:The given data:We will:I will generate a population vs. year plot, as well as a change-in-population vs. elapsed years plot. Let me compute and display these plots.Since the growth slows down ov

2025-03-13 08:10:33 39

原创 Answers:Mathematical Modeling-Frank R. Giordano(5Version)-1.1 PROJECTS

M=Pr(1+r)n(1+r)n−1M = \frac{P r (1 + r)^n}{(1 + r)^n - 1}M=(1+r)n−1Pr(1+r)n​Where:Let’s calculate the monthly payments for each car and compare them to your $500 budget.You can afford the following cars based on your $500/month budget:The Chevy Volt and

2025-03-11 07:02:42 41

原创 Answers:Mathematical Modeling-Frank R. Giordano(5Version)-1.1Modeling Change with Difference Eqn.

This is a geometric sequence with a common ratio r=3r = 3r=3.

1. a0=1a_0 = 1a0​=1 (given)
2. a1=3a0=3⋅1=3a_1 = 3a_0 = 3 \cdot 1 = 3a1​=3a0​=3⋅1=3
3. a2=3a1=3⋅3=9a_2 = 3a_1 = 3 \cdot 3 = 9a2​=3a1​=3⋅3=9
4. a3=3a2=3⋅9=27a_3 = 3a_2 = 3 \cdot 9 = 27a3​=3a2​=3

2025-03-06 10:05:21 526

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-3.2Simpson公式

在这种情况下,辛普森法则给出了积分的精确值!正如我们将看到的,对于任何二次多项式,辛普森法则都能给出精确结果。我们现在证明辛普森法则确实是牛顿-科特斯法则的一个阶数为。时,使用拉格朗日基函数来构造插值权重。证明基于《数值分析导论》中的第七章。与梯形法则一样,我们也可以为辛普森法则界定误差。辛普森法则是牛顿-科特斯求积法则的一个特例。通过对与这些点相关的拉格朗日插值多项式。来得到插值多项式的表示(简化记作。上的四阶导数的绝对值的上界。这个结果比梯形法则的近似值。牛顿-科特斯法则的阶数为。

2025-02-28 10:39:09 756

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-3.1积分与求积法

这个积分无法用闭式形式表示。即使在某些情况下原函数可以被计算出来,从数值计算的角度来看,直接计算原函数可能并不是最佳选择。因此,问题的核心是如何尽可能精确地通过数值方法近似这些积分。梯形法则通过由函数图形所定义的梯形的面积来近似积分,积分被解释为曲线下方的面积。利用插值误差,我们可以推导出梯形法则的积分误差。梯形法则可以被解释为在。如果可能的话,可以通过计算原函数。梯形法则是一个求积法则的例子。的函数)来求得积分值,即。根据积分中值定理,存在某个。我们关注的问题是计算积分。使用梯形法则,我们得到。

2025-02-26 12:00:07 40

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-2.5 Alternative Form of Lagrange Interpolation

并用这个“巧妙的 1”进行除法运算,即可得到公式 (2.9)。最后,可以证明在诸如切比雪夫点这样的点上,计算重心拉格朗日插值的数值是稳定的。此外,添加新的插值点需要重新计算拉格朗日基多项式。这两个问题都可以通过重写拉格朗日插值公式来解决。一旦权重计算完成,求值只需要。一方面,它的计算需要。次操作,并且更新新权重也只需要。为了推导这个公式,定义。),拉格朗日插值多项式可以写成。拉格朗日插值多项式的表示形式。

2025-02-25 15:42:34 34

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-2.4收敛性

我们有一个插值误差的界限。是否可以通过增加更多的插值点或修改这些点的分布来使误差更小?这个问题的答案可能取决于两个因素:所考虑的函数类以及点的分布方式。计算此例的插值误差,结果与之前的例子完全不同。事实上,绘制误差图并将其与等距点的情况进行比较,可以发现,巧妙地选择插值点可以带来巨大的好处。令人惊讶的是,答案是否定的,正如以下著名的例子——龙格现象(Runge Phenomenon)所示。然而,当我们在不同的等距点上对逐渐增大的。问题并非源于插值方法本身,而是与点的分布方式有关。次拉格朗日插值多项式。

2025-02-25 15:40:33 39

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-2.3牛顿插值

一种便捷的表示方式为pxa0​a1​x−x0​⋯an​x−x0​x−xn−1​2.5如果已知系数a0​an​,那么仅需n,可以使用进行高效计算。此外,这种形式的一个优势是,:如果新增一个插值点xn1​,则原有的系数a0​an​。设插值点为x0​−1x1​0x2​1x3​2。那么三次多项式p3​xx3可以按照形式 (2.5) 重新表示为p3​x−1x1x。

2025-02-24 11:14:12 29

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-2.2插值误差

现在,我们已经证明了函数的插值多项式的存在性和唯一性,接下来我们希望了解它对原函数的逼近程度。尽管在实际计算中我们无法准确找到这个位置,但情况并不算太糟,因为有时我们可以在区间。,那么拉格朗日插值多项式可能与原始函数看起来非常不同。没有任何额外的假设,这个误差可能是任意的。因此,我们将限制讨论足够平滑的函数。为了证明定理 2.3,我们需要以下罗尔定理的推论。,但它可能有不同的表示形式。中保证一定的精度,插值点的间距必须足够小。处的拉格朗日插值多项式。,存在介于两者之间的某个点使得。那么,我们应选择多大的。

2025-02-23 21:48:52 60

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-2.1插值

给定。

2025-02-21 16:21:32 46

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-1.2精确度

1.2 准确性在19世纪初,C.F. 高斯,历史上最具影响力的数学家之一以及数值分析的先驱,发展了最小二乘法,以预测最近发现的小行星谷神星的再次出现。他深知数值计算的局限性,正如本讲座开头引用的那句名言所表明的那样。

2025-02-20 14:54:46 38

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 1-1.1 引论

我们使用的“计算时间”度量是解决问题所需的基本(浮点)算术运算数量(例如加法、减法、乘法、除法),它是输入大小的函数。一个有趣且具有挑战性的领域是代数复杂度理论,它研究执行某些计算任务所需的算术运算的下界。实际上,我们不需要计算一系列的数值,而是在每一步都覆盖一个变量的值。“由于我们从对数表和三角函数表中取出的数值都不能达到绝对精确,而只能在一定程度上近似,因此,利用这些数值进行的所有计算,其结果也只能是近似正确的。在这里,我们不太关注精确的数字,而更关心的是计算量的级别。的多项式,依此类推。

2025-02-20 14:52:29 69

原创 微分方程(Blanchard Differential Equations 4th)-补充习题06

y′axyx″4xtcos⁡2tX′AXX′AXFxdtdx​fxy)dtdy​gxy)dtdx​0xxyX′AXTrA)detA)dxdy​y1​y′′ω2y0λα±iβα0。

2025-02-16 18:34:44 108

原创 微分方程(Blanchard Differential Equations 4th)-补充习题03

AUKODE part

2025-02-16 18:30:35 90

原创 微分方程(Blanchard Differential Equations 4th)-补充习题04

复习强化题目训练

2025-02-16 18:30:06 58

原创 微分方程(Blanchard Differential Equations 4th)-补充习题02

′3y0?A. yCe−3t;B. yCe3t;C. yCt3;D. yCe−3t′ptygtis:A. e∫ptdt;B. ∫ptdt;C. e−pt;D. ∫gtdtFor y′′4y0A. r24r0;B. r240;C. r2−4r0;D. r20.′′ysin2tis:A. Acos2tB。

2025-02-16 18:29:21 75

原创 微分方程(Blanchard Differential Equations 4th)-补充习题05

强化复习题

2025-02-16 18:28:50 71

原创 THE UNIVERSITY OF MANCHESTER-NUMERICAL ANALYSIS 2Final Exam2023

f∈C−11.L∞​pn​≤nfL∞​pn​ffn1[−11.(c)L∞​p2​x)≤2fx4x3.n13∣fxk​−pn​xk​∣∣∣f−pn​∣∣∞​k01...n1.fxk​−pn​xk​−fxk1​−pn​xk1​))k01...n.{xk​k0n1​pn​f.f−pn​n。

2025-01-21 12:57:09 41

原创 微分方程(Blanchard Differential Equations 4th)中文版Exercise 4.3

t2d2y​9ycost2d2y​9y0.290⇒r±3ic​tC1​cos3tC2​sin3ttp​tAcostBsintt2d2yp​​9yp​costtdyp​​−AsintBcostdt2d2yp​​−Acost−Bsint−Acost−Bsint9AcostBsint。

2024-12-22 08:36:54 75

微分方程+题解+考研+学习

微分方程+题解+考研+学习

2024-08-27

差分方程+积分方程+经典书籍+Dan Sloughter

第1.1节,面积与切线

2024-08-25

线性代数+题库+解答+考研

章 向量空閬 *** 1力保也号 L 覃 铼性帱换 57 第 旺 章 缥性轉换的矩障代表式 95 章 基本的矩陣算衡 129 行列式 159 覃 逆矩障 197 矩陣的秩 221 線性聯立方程组 237 阿 荤 多项式代數 293 特徵值問题 319 适 矩障的對角化 361

2024-08-24

高等代数+考研+浙江大学+试卷

高等代数+考研+浙江大学+试卷

2024-08-24

考研+上海交通大学+数学+高等代数+试卷

考研+上海交通大学+数学+高等代数+试卷

2024-08-23

考研+大连理工大学+高等代数+试题

考研+大连理工大学+高等代数+试题

2024-08-23

高等代数+解析几何+北京大学+考研试卷

word 版

2024-08-22

现代经济管理应用数学基础-实用线性代数

包含线性代数的基本理论知识+经济模型应用:投入产出模型

2024-08-22

科技论文写作+Latex+科研初学者+经典教材

latex 排版技术,图表,公式,各类符号

2024-08-21

Blanchard Differential Equations PDF version Fourth Edition

微分方程的经典书籍,自封式教材,无需额外知识,就可以学懂。

2024-08-21

数学+近世代数+课后习题答案

数学+近世代数+课后习题答案

2024-08-21

金融工程+高校教师+授课+经济学专业

世界大都市评价指标

2024-08-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除