Answers:Mathematical Modeling-Frank R. Giordano(5Version)-1.1 PROJECTS

M=Pr(1+r)n(1+r)n−1 M = \frac{P r (1 + r)^n}{(1 + r)^n - 1} M=(1+r)n1Pr(1+r)n

Where:

  • MMM = Monthly payment
  • PPP = Loan amount (Car price - Cash Down)
  • rrr = Monthly interest rate (APR12×100\frac{\text{APR}}{12 \times 100}12×100APR)
  • nnn = Number of months

Let’s calculate the monthly payments for each car and compare them to your $500 budget.

You can afford the following cars based on your $500/month budget:

  1. Ford Fiesta – $255.41/month
  2. Ford Focus – $370.93/month
  3. Chevy Cruz – $303.14/month
  4. Toyota Camry – $431.09/month
  5. Toyota Corolla – $289.06/month
  6. Toyota Prius – $351.56/month

The Chevy Volt and Toyota Camry Hybrid exceed your budget. Would you like additional details or recommendations based on fuel efficiency?


  1. We will use the loan payment formula:

M=Pr(1+r)n(1+r)n−1 M = \frac{P r (1 + r)^n}{(1 + r)^n - 1} M=(1+r)n1Pr(1+r)n

Where:

  • MMM = Monthly payment
  • PPP = Loan amount (Remaining balance after 8 years for refinancing)
  • rrr = Monthly interest rate (APR12×100\frac{\text{APR}}{12 \times 100}12×100APR)
  • nnn = Number of months

We will:

  1. Calculate the original monthly payment for a 30-year (360-month) mortgage with 0.4% monthly interest.
  2. Determine the remaining balance after 8 years (96 months).
  3. Compute the new monthly payments for refinancing options:
    • 20-year loan at 4% APR (0.04/12 monthly interest)
    • 15-year loan at 3.8% APR (0.038/12 monthly interest)
  4. Compare the new payments and decide if refinancing is beneficial.

Let’s compute these values.

Here are the results:

  1. Original 30-year mortgage (0.4% monthly interest)

    • Monthly payment: $1311.66
    • Remaining balance after 8 years: $213,611.64
  2. Refinancing options (including $2500 closing costs):

    • 20-year loan at 4% APR → New monthly payment: $1309.59
    • 15-year loan at 3.8% APR → New monthly payment: $1576.98

Should You Refinance?

  • The 20-year loan keeps your payment nearly the same ($1309.59 vs. $1311.66) while reducing your remaining loan term from 22 years to 20 years, saving interest in the long run.
  • The 15-year loan increases your payment to $1576.98, but you pay off the loan 7 years faster and save significantly on interest.

Recommendation:

  • If you can afford the higher monthly payment, the 15-year loan is the best option, as it reduces interest costs.
  • If you want to keep payments similar while shortening your term, the 20-year loan is a solid choice.
  • If you plan to move soon, refinancing may not be worth the closing costs.
# Given loan details
loan_amount = 250000  # Initial mortgage
initial_apr = 0.4 * 12  # Convert monthly rate to yearly (4.8% APR)
initial_months = 360  # 30 years

# Refinancing options
refinance_20_apr = 4.0  # 4% per year
refinance_15_apr = 3.8  # 3.8% per year
refinance_20_months = 240  # 20 years
refinance_15_months = 180  # 15 years
closing_costs = 2500  # Cost of refinancing
years_paid = 8
months_paid = years_paid * 12  # 96 months

# Function to calculate monthly payment
def monthly_payment(P, apr, months):
    r = (apr / 100) / 12  # Convert APR to monthly interest rate
    if r == 0:
        return P / months  # Simple division if 0% interest
    return (P * r * (1 + r)**months) / ((1 + r)**months - 1)

# Compute initial monthly payment
initial_monthly_payment = monthly_payment(loan_amount, initial_apr, initial_months)

# Compute remaining balance after 8 years
remaining_balance = loan_amount * ((1 + (initial_apr / 100) / 12)**months_paid) - (
    (initial_monthly_payment * ((1 + (initial_apr / 100) / 12)**months_paid - 1)) / ((initial_apr / 100) / 12)
)

# Compute new monthly payments after refinancing
new_loan_20 = remaining_balance + closing_costs
new_loan_15 = remaining_balance + closing_costs

new_payment_20 = monthly_payment(new_loan_20, refinance_20_apr, refinance_20_months)
new_payment_15 = monthly_payment(new_loan_15, refinance_15_apr, refinance_15_months)

# Output results
initial_monthly_payment, remaining_balance, new_payment_20, new_payment_15

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值