M=Pr(1+r)n(1+r)n−1 M = \frac{P r (1 + r)^n}{(1 + r)^n - 1} M=(1+r)n−1Pr(1+r)n
Where:
- MMM = Monthly payment
- PPP = Loan amount (Car price - Cash Down)
- rrr = Monthly interest rate (APR12×100\frac{\text{APR}}{12 \times 100}12×100APR)
- nnn = Number of months
Let’s calculate the monthly payments for each car and compare them to your $500 budget.
You can afford the following cars based on your $500/month budget:
- Ford Fiesta – $255.41/month
- Ford Focus – $370.93/month
- Chevy Cruz – $303.14/month
- Toyota Camry – $431.09/month
- Toyota Corolla – $289.06/month
- Toyota Prius – $351.56/month
The Chevy Volt and Toyota Camry Hybrid exceed your budget. Would you like additional details or recommendations based on fuel efficiency?
- We will use the loan payment formula:
M=Pr(1+r)n(1+r)n−1 M = \frac{P r (1 + r)^n}{(1 + r)^n - 1} M=(1+r)n−1Pr(1+r)n
Where:
- MMM = Monthly payment
- PPP = Loan amount (Remaining balance after 8 years for refinancing)
- rrr = Monthly interest rate (APR12×100\frac{\text{APR}}{12 \times 100}12×100APR)
- nnn = Number of months
We will:
- Calculate the original monthly payment for a 30-year (360-month) mortgage with 0.4% monthly interest.
- Determine the remaining balance after 8 years (96 months).
- Compute the new monthly payments for refinancing options:
- 20-year loan at 4% APR (0.04/12 monthly interest)
- 15-year loan at 3.8% APR (0.038/12 monthly interest)
- Compare the new payments and decide if refinancing is beneficial.
Let’s compute these values.
Here are the results:
-
Original 30-year mortgage (0.4% monthly interest)
- Monthly payment: $1311.66
- Remaining balance after 8 years: $213,611.64
-
Refinancing options (including $2500 closing costs):
- 20-year loan at 4% APR → New monthly payment: $1309.59
- 15-year loan at 3.8% APR → New monthly payment: $1576.98
Should You Refinance?
- The 20-year loan keeps your payment nearly the same ($1309.59 vs. $1311.66) while reducing your remaining loan term from 22 years to 20 years, saving interest in the long run.
- The 15-year loan increases your payment to $1576.98, but you pay off the loan 7 years faster and save significantly on interest.
Recommendation:
- If you can afford the higher monthly payment, the 15-year loan is the best option, as it reduces interest costs.
- If you want to keep payments similar while shortening your term, the 20-year loan is a solid choice.
- If you plan to move soon, refinancing may not be worth the closing costs.
# Given loan details
loan_amount = 250000 # Initial mortgage
initial_apr = 0.4 * 12 # Convert monthly rate to yearly (4.8% APR)
initial_months = 360 # 30 years
# Refinancing options
refinance_20_apr = 4.0 # 4% per year
refinance_15_apr = 3.8 # 3.8% per year
refinance_20_months = 240 # 20 years
refinance_15_months = 180 # 15 years
closing_costs = 2500 # Cost of refinancing
years_paid = 8
months_paid = years_paid * 12 # 96 months
# Function to calculate monthly payment
def monthly_payment(P, apr, months):
r = (apr / 100) / 12 # Convert APR to monthly interest rate
if r == 0:
return P / months # Simple division if 0% interest
return (P * r * (1 + r)**months) / ((1 + r)**months - 1)
# Compute initial monthly payment
initial_monthly_payment = monthly_payment(loan_amount, initial_apr, initial_months)
# Compute remaining balance after 8 years
remaining_balance = loan_amount * ((1 + (initial_apr / 100) / 12)**months_paid) - (
(initial_monthly_payment * ((1 + (initial_apr / 100) / 12)**months_paid - 1)) / ((initial_apr / 100) / 12)
)
# Compute new monthly payments after refinancing
new_loan_20 = remaining_balance + closing_costs
new_loan_15 = remaining_balance + closing_costs
new_payment_20 = monthly_payment(new_loan_20, refinance_20_apr, refinance_20_months)
new_payment_15 = monthly_payment(new_loan_15, refinance_15_apr, refinance_15_months)
# Output results
initial_monthly_payment, remaining_balance, new_payment_20, new_payment_15