
LLNL
文章平均质量分 90
东北豆子哥
多年HPC开发经验,熟悉多线程、集群分布式、GPU高性能开发技术,熟悉C/C++, Fortran, CUDA,Python,Matlab等开发工具语言;数年油气地震资料成像开发经验;数年CAE工业软件开发经验
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
HYPRE/Multigrid Reduction (MGR)
一、Multigrid Reduction (MGR) 简介1. 基本概念2. MGR 与标准 AMG 的区别二、MGR 的数学原理(简要)\[x_F \\x_C三、MGR 的实现结构(在 Hypre 中)四、举例说明:求解对流-扩散方程问题描述使用 MGR 的策略代码片段(C语言调用 Hypre)五、MGR 的优势与适用场景优势典型应用场景六、扩展:MGRIT(Multigrid Reduction in Time)七、总结参考资料。原创 2025-07-29 17:24:50 · 1126 阅读 · 0 评论 -
LLNL/lvArray
lvarray 是由美国劳伦斯利弗莫尔国家实验室 (Lawrence Livermore National Laboratory, LLNL) 开发的一个 C++ 库,全称为 “Livermore Volume Array”。它是一个高性能的多维数组容器库,专为科学计算和高性能计算 (HPC) 设计。// 使用 Umpire 分配器。原创 2025-07-29 10:35:53 · 247 阅读 · 0 评论 -
LLNL/GEOS(**Geological and Environmental Simulation Framework**)介绍
多相流(Multiphase flow)地热传输(Thermal transport)化学反应(Geochemical reactions)岩石力学(Rock mechanics / geomechanics)裂缝传播(Fracture propagation)CO₂ 封存(Carbon capture and storage, CCUS)地下储能(Subsurface energy storage)特性描述类型开源、多物理场、高性能应用地质、环境、能源、碳封存等语言。原创 2025-07-14 17:56:14 · 779 阅读 · 0 评论 -
LLNL/CHAI
CHAI (Copy Hiding Array Interface) 是由美国劳伦斯利弗莫尔国家实验室(LLNL)开发的一个C++库,旨在简化异构计算环境(如CPU+GPU)中的内存管理。CHAI的主要目标是提供一种统一的方式来管理不同设备上的内存,同时自动处理数据在不同内存空间之间的传输。// 定义执行策略// 在特定空间执行操作// GPU上的操作});LLNL的CHAI项目为异构计算环境提供了便捷的内存管理解决方案,特别适合与RAJA一起使用进行跨平台性能可移植的开发。原创 2025-07-29 10:22:54 · 781 阅读 · 0 评论 -
LLNL/Umpire
项目名称:Umpire开发机构编程语言:C++许可证官网/GitHub文档Umpire 提供了一个统一的接口,用于在不同内存资源(如主机内存、设备内存、共享内存、对齐内存等)上进行内存分配、释放和操作。它支持多种内存类型和分配策略,允许用户在运行时动态选择内存资源,从而优化性能。Umpire 是一个功能强大、灵活且高效的内存管理库,特别适合在 HPC 和异构计算环境中使用。通过提供统一的接口和丰富的分配策略,它帮助开发者摆脱底层内存管理的复杂性,专注于算法和性能优化。原创 2025-07-29 10:14:05 · 1296 阅读 · 0 评论 -
LLNL/RAJA
RAJA 是现代 HPC 开发中实现性能可移植性的关键工具之一。通过将算法与执行解耦,它帮助开发者构建可在 CPU 和 GPU 上高效运行的代码。虽然需要一定的学习成本,但对于需要长期维护、跨平台部署的科学计算项目,RAJA 是一个非常值得投资的技术栈。如需进一步帮助(如配置 CUDA + RAJA 环境、性能调优、与 Umpire 集成等),欢迎继续提问!原创 2025-07-29 10:11:43 · 1080 阅读 · 0 评论