文章目录
一、分类算法-k近邻算法(KNN)
定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
二、推测入住位置案例
分析:特征值:x,y坐标,定位准确性,年 ,日,时,周, 目标值:入住位置的id 是一个分类问题。
处理:
1、0 <x <10 0 <y <10
2、时间戳进行(年,月,日,周,时分秒),当做新的特征
3、几千 ~几万个 少于指定签到人数的位置删除
三、没有进行标准化
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
import pandas as pd
def knncls():
"""
k-近邻预测用户签到位置
:return: None
"""
#读取数据
data = pd.read_csv("./data/train.csv")
# print(data.head(10))
#处理数据
#1 缩小数据 查询数据筛选
data = data.query("x > 1.0 & x <1.25 & y >2.5 & y<2.75")
#处理时间的数据
time_value = pd.to_datetime(data['time'],unit='s')
#把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
#构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
#把时间戳特征删除
data = data.drop(['time'],axis=1)
#把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id >3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# print(data)
#取出数据当中的特证值和目标值
y = data['place_id']
x = data.drop(['place_id'],axis=1)
#进行数据的分割,训练集和测试集
x_train,x_test,y_train,y_test =train_test_split(x,y,test_size =0.25)
#特征工程(标准化)
#进行算法流程
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train,y_train)
#得出预测结果
y_predict = knn.predict(x_test)
print("预测的目标签到位置为:",y_predict)
#得出准确率
print("预测的准确率",knn.score(x_test,y_test))
if __name__ == "__main__":
knncls()
四、进行标准化
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import pandas as pd
def knncls():
"""
k-近邻预测用户签到位置
:return: None
"""
#读取数据
data = pd.read_csv("./data/train.csv")
# print(data.head(10))
#处理数据
#1 缩小数据 查询数据筛选
data = data.query("x > 1.0 & x <1.25 & y >2.5 & y<2.75")
#处理时间的数据
time_value = pd.to_datetime(data['time'],unit='s')
#把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
#构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
#把时间戳特征删除
data = data.drop(['time'],axis=1)
#把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id >3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# print(data)
#取出数据当中的特证值和目标值
y = data['place_id']
x = data.drop(['place_id'],axis=1)
#进行数据的分割,训练集和测试集
x_train,x_test,y_train,y_test =train_test_split(x,y,test_size =0.25)
#特征工程(标准化)
std = StandardScaler()
#对测试集和训练集的特证值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.fit_transform(x_test)
#进行算法流程
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(x_train,y_train)
#得出预测结果
y_predict = knn.predict(x_test)
print("预测的目标签到位置为:",y_predict)
#得出准确率
print("预测的准确率",knn.score(x_test,y_test))
if __name__ == "__main__":
knncls()
五、k近邻算法总结
1、k值取多大?有什么影响?
k值取很小:容易受异常点影响
k值取很大:容易受最近数据太多导致比例变化
优点:
简单,易于理解,易于实现,无需估计参数,无需训练
缺点:
懒惰算法,对测试样本分类时的计算量大,内存开销大
必须指定K值,K值选择不当则分类精度不能保证
使用场景:小数据场景,几千~几万样本,具体场景具体业务
去测试
六、分类算法-朴素贝叶斯算法
朴素贝叶斯算法的条件是 特征独立。
1、联合概率和条件概率:
联合概率:包含多个条件,且所有条件同时成立的概率
记作:P(A,B)
条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
记作:P(A|B)
特性:P(A1,A2|B) = P(A1|B)P(A2|B)
注意:此条件概率的成立,是由于A1,A2相互独立的结果
2、朴素贝叶斯-贝叶斯公式
3、拉普拉斯平滑系数
问题:从上面的例子我们得到娱乐概率为0,这是不合理的,如果词频列表里面
有很多出现次数都为0,很可能计算结果都为零
解决方法:拉普拉斯平滑系数
α为指定的系数一般为1,m为训练文档中统计出的特征词个数
3、朴素贝叶斯API
sklearn.naive_bayes.MultinomialNB(alpha = 1.0)
朴素贝叶斯分类
alpha:拉普拉斯平滑系数
在这里插入代码片
七、朴素贝叶斯案例
sklearn20类新闻分类
20个新闻组数据集包含20个主题的18000个新闻组帖子
# coding=utf-8
from sklearn.datasets import load_iris,fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
import pandas as pd
def naviebayes():
"""
朴素贝叶斯进行文本分类
:return: None
"""
news = fetch_20newsgroups(subset='all')
#进行数据分割
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
#对数据集进行特征抽取
tf = TfidfVectorizer()
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names_out())
x_test = tf.transform(x_test)
#进行朴素贝叶斯算法
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train,y_train)
y_predict = mlt.predict(x_test)
print("预测的文章的类别为:",y_predict)
#得出准确率
print("准确率为:",mlt.score(x_test,y_test))
return None
if __name__ == "__main__":
naviebayes()
朴素贝叶斯总结:
优点:
朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
对缺失数据不太敏感,算法也比较简单,常用于文本分类。
分类准确度高,速度快
缺点:
需要知道先验概率P(F1,F2,…|C),因此在某些时候会由于假设的先验
模型的原因导致预测效果不佳。
八、分类模型的评估
精确率:预测结果为正例样本中真实为正例的比例(查得准)
召回率:真实为正例的样本中预测结果为正例的比例(查的全,对正样本的区分能力)
# coding=utf-8
from sklearn.datasets import load_iris,fetch_20newsgroups
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import pandas as pd
def naviebayes():
"""
朴素贝叶斯进行文本分类
:return: None
"""
news = fetch_20newsgroups(subset='all')
#进行数据分割
x_train,x_test,y_train,y_test = train_test_split(news.data,news.target,test_size=0.25)
#对数据集进行特征抽取
tf = TfidfVectorizer()
x_train = tf.fit_transform(x_train)
print(tf.get_feature_names_out())
x_test = tf.transform(x_test)
#进行朴素贝叶斯算法
mlt = MultinomialNB(alpha=1.0)
print(x_train.toarray())
mlt.fit(x_train,y_train)
y_predict = mlt.predict(x_test)
print("预测的文章的类别为:",y_predict)
#得出准确率
print("准确率为:",mlt.score(x_test,y_test))
print("每个类别的精确率和召回率",classification_report(y_test,y_predict,target_names=news.target_names))
return None
if __name__ == "__main__":
naviebayes()
九、交叉验证
交叉验证:为了让被评估的模型更加准确可信
交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。
超参数搜索-网格搜索
通常情况下,有很多参数是需要手动指定的(如k-近邻算法中的K值),这种叫超参数。但是手动过程繁杂,所以需要对模型预设几种超参数组合。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
import pandas as pd
def knncls():
"""
k-近邻预测用户签到位置
:return: None
"""
#读取数据
data = pd.read_csv("./data/train.csv")
# print(data.head(10))
#处理数据
#1 缩小数据 查询数据筛选
data = data.query("x > 1.0 & x <1.25 & y >2.5 & y<2.75")
#处理时间的数据
time_value = pd.to_datetime(data['time'],unit='s')
#把日期格式转换成字典格式
time_value = pd.DatetimeIndex(time_value)
#构造一些特征
data['day'] = time_value.day
data['hour'] = time_value.hour
data['weekday'] = time_value.weekday
#把时间戳特征删除
data = data.drop(['time'],axis=1)
#把签到数量少于n个目标位置删除
place_count = data.groupby('place_id').count()
tf = place_count[place_count.row_id >3].reset_index()
data = data[data['place_id'].isin(tf.place_id)]
# print(data)
#取出数据当中的特证值和目标值
y = data['place_id']
x = data.drop(['place_id'],axis=1)
#进行数据的分割,训练集和测试集
x_train,x_test,y_train,y_test =train_test_split(x,y,test_size =0.25)
#特征工程(标准化)
std = StandardScaler()
#对测试集和训练集的特证值进行标准化
x_train = std.fit_transform(x_train)
x_test = std.fit_transform(x_test)
#进行算法流程
knn = KNeighborsClassifier()
# knn.fit(x_train,y_train)
# #得出预测结果
# y_predict = knn.predict(x_test)
# print("预测的目标签到位置为:",y_predict)
# #得出准确率
# print("预测的准确率",knn.score(x_test,y_test))
#构造一些参数的值进行搜索
param = {"n_neighbors":[3,5,10]}
gc = GridSearchCV(knn,param_grid=param,cv=10)
gc.fit(x_train,y_train)
#预测准确率
print("在测试集上的准确率",gc.score(x_test,y_test))
print("在交叉验证中最好的结果",gc.best_score_)
print("选择最好的模型是",gc.best_estimator_)
print("每个超参数每次交叉验证的结果",gc.cv_results_)
if __name__ == "__main__":
knncls()