机器学习实战1-四种算法对比对客户信用卡还款情况进行预测与模型评估

大家好,我是微学AI,今天给大家带来一个机器学习实战案例:利用机器学习的四种算法对比对客户信用卡还款情况进行分类。信用卡又叫贷记卡,是由商业银行或信用卡公司对信用合格的消费者发行的信用证明。现在的年轻人,特别是80后,90后甚至00后到喜欢超前消费,每个人名下多多少少都有至少一张信用卡,有些人由于过度超前消费,导致下个月无法还款导致的逾期,这样会对个人征信产生影响,今天我们就来分析分析具有哪些特性的人会有信用卡逾期的可能。

一、前期工作

1. 导入库包

import pandas as pd
import numpy as np
from sklearn.model_selection import learning_curve, train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from matplotlib import pyplot as plt
import seabor
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值