
OpenCV
文章平均质量分 57
小陈phd
哇咔咔,过拟合,我跟你拼了;V:SWPUCWF 欢迎技术交流
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
QT从入门到精通(三)——实现文件列表遍历的图像浏览器
在本篇博客中将介绍如何使用 Qt 框架创建一个简单的图像浏览器应用程序。该应用程序能够选择文件夹,遍历其中的图像文件,并显示这些图像。我们将重点关注如何使用 Qt 的文件对话框和 OpenCV 库来处理图像。原创 2024-12-25 22:21:59 · 499 阅读 · 0 评论 -
OpenCV学习——图像融合
import cv2 as cv# 读取图片bg = cv.imread("test_images/background.jpg", cv.IMREAD_COLOR)fg = cv.imread("test_images/forground.png", cv.IMREAD_COLOR)# 打印图片尺寸print(bg.shape)print(fg.shape)# 尺寸重构resize_size = (1200, 800)bg = cv.resize(bg, resize_size,原创 2024-12-19 22:49:26 · 821 阅读 · 1 评论 -
OpenCV基本图像处理操作(三)——图像轮廓
method:轮廓逼近方法。mode:轮廓检索模式。原创 2024-12-19 22:47:15 · 1045 阅读 · 0 评论 -
OpenCV(python)从入门到精通——运算操作
加法减法操作import cv2 as cvimport numpy as npx = np.uint8([250])y = np.uint8([10])x_1 = np.uint8([10])y_1 = np.uint8([20])# 加法,相加最大只能为255print(cv.add(x,y))# 减法,相互减最小值只能为0print(cv.subtract(x_1,y_1))图像加法import cv2 as cvimport numpy as npi.原创 2024-12-19 22:46:58 · 692 阅读 · 3 评论 -
OpenCV(python)从入门到精通——文件操作
图像的读取import cv2 as cv'''图片的读取'''if __name__ == '__main__': # 读取图片 img = cv.imread(r"images/1.jpg",cv.IMREAD_COLOR) # 显示图片 cv.imshow("pic show",img) # 暂停 cv.waitKey(0)不同读取方式,灰度图读取import cv2 as cv'''图片的读取'''if __n.原创 2024-12-19 22:46:47 · 1045 阅读 · 0 评论 -
传统CV算法——基于opencv的答题卡识别判卷系统
实现答题卡识别系统中的各个功能。每个步骤都是自动化处理的关键部分,确保系统能够准确地读取和评分答题卡。通过这样的方式,可以大大减少人工操作的需求,提高评分的效率和准确性。原创 2024-12-19 22:43:17 · 3852 阅读 · 0 评论 -
OpenCV从入门到精通实战(一)——模板匹配实现信用卡号识别
信用卡识别轮廓模板显示模板图像模板转灰度图转阈值计算轮廓轮廓排序并且保留显示图像转灰度图进行礼帽操作Sobel边缘算子闭操作 补洞轮廓排序结果依次识别轮廓模板识别出来的数字需要比对,需要找个模板对应一下。# 导入工具包import argparseimport cv2import numpy as npfrom imutils import contoursimport myutilsimport cv2def sort_contours(cnts, method="left-to原创 2024-12-19 22:41:43 · 1258 阅读 · 0 评论 -
OpenCV从入门到精通实战(五)——dnn加载深度学习模型
从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程。原创 2024-11-26 09:38:09 · 1479 阅读 · 0 评论 -
OpenCV从入门到精通实战(八)——基于dlib的人脸关键点定位
使用定义了两组面部关键点,一组包含68个点,另一组包含5个点,这些关键点用于后续的特征提取。])原创 2024-11-26 09:37:53 · 1239 阅读 · 0 评论 -
OpenCV从入门到精通实战(七)——探索图像处理:自定义滤波与OpenCV卷积核
接下来,我们实现一个名为convolve的函数,该函数接收一个图像和一个卷积核作为输入,并返回卷积后的结果。# 输入图像和核的尺寸# 选择pad,卷积后图像大小不变# 重复最后一个元素,top, bottom, left, right# 卷积操作# 提取每一个卷积区域# 内积运算# 保存相应的结果# 将得到的结果放缩到[0, 255]原创 2024-11-26 09:37:38 · 1095 阅读 · 0 评论 -
OpenCV基本图像处理操作(四)——傅立叶变换
opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。高通滤波器:只保留高频,会使得图像细节增强。低频:变化缓慢的灰度分量,例如一片大海。低通滤波器:只保留低频,会使得图像模糊。高频:变化剧烈的灰度分量,例如边界。原创 2024-11-18 17:32:47 · 652 阅读 · 0 评论 -
OpenCV基本图像处理操作(五)——图像数据操作
这段代码演示了使用 OpenCV 在图像边缘添加不同类型的边框的方法。代码首先指定了要添加到图像四周的边框大小,然后使用不同的边框类型来创建新的图像。最后,使用 matplotlib 展示了原始图像和各种边框效果。原创 2024-11-18 17:32:27 · 811 阅读 · 0 评论 -
OpenCV基本图像处理操作(六)——直方图与模版匹配
模板匹配和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1)原创 2024-11-18 17:32:10 · 1502 阅读 · 0 评论 -
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
使用定义了包含68个点的面部关键点,用于眼部分析。])此函数计算眼部的纵横比,用于判断眼睛是否闭合。return ear。原创 2024-11-18 17:31:32 · 917 阅读 · 4 评论