
- dataLoader的作用就是把图片按照一定的batchsize作为一个部分
- 四张图片,3通道,32*32,tensor就是她的target
- 一组imgs,targets 组合成了代码中的 for data in train_loader中的一个data

import torchvision
from tensorboard.compat.proto.summary_pb2 import Summary
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_data = torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=dataset_transform,download=True)
test_data = torchvision.datasets.CIFAR10(root='./dataset',train=False,transform=dataset_transform,download=True)
train_loader = DataLoader(train_data,batch_size=64,shuffle=True,num_workers=0,drop_last=False)
# 训练集的第一张图片
image ,target = train_data[0]
writer = SummaryWriter('logs')
for epoch in range(2):
step = 0
for data in train_loader:
images ,targets = data
# add_images才能在一个step放多张图片
writer.add_images('epoch:{}'.format(epoch),images,global_step=step)
step =step+1
# print(images.shape)
# print(targets)
writer.close()
