DataLoader()使用

该博客介绍了如何利用PyTorch加载CIFAR10数据集,并通过DataLoader进行批量处理。代码展示了如何在训练过程中使用Tensorboard进行图片和损失的可视化,包括每轮训练的图片展示。整个过程涵盖了数据预处理、数据加载和训练日志的记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. dataLoader的作用就是把图片按照一定的batchsize作为一个部分
  2. 四张图片,3通道,32*32,tensor就是她的target
  3. 一组imgs,targets 组合成了代码中的 for data in train_loader中的一个data

import torchvision
from tensorboard.compat.proto.summary_pb2 import Summary
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
train_data = torchvision.datasets.CIFAR10(root='./dataset',train=True,transform=dataset_transform,download=True)
test_data = torchvision.datasets.CIFAR10(root='./dataset',train=False,transform=dataset_transform,download=True)

train_loader = DataLoader(train_data,batch_size=64,shuffle=True,num_workers=0,drop_last=False)
# 训练集的第一张图片
image ,target = train_data[0]
writer = SummaryWriter('logs')
for epoch in range(2):
    step = 0
    for data in train_loader:
        images ,targets = data
        # add_images才能在一个step放多张图片
        writer.add_images('epoch:{}'.format(epoch),images,global_step=step)
        step =step+1
        # print(images.shape)
        # print(targets)
writer.close()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值