运筹学 $5约束极值

本文深入探讨运筹学中的约束极值问题,包括最优性条件(K-T条件)、二次规划及其解法,以及外点法和内点法在内的制约函数法。通过对这些理论和方法的讲解,帮助读者理解如何解决带有约束的优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§5 约束极值

C1 最优性条件

1)非起作用约束:当前可行解不在约束边界的约束

g(X0)>tg(X_0)\gt tg(X0)>t满足g(X0)≥tg(X_0)\ge tg(X0)t但不在边界上

2)可行方向∃λ:X0+λD∈R  ⟺  \exist\lambda:X_0+\lambda D\in R\iffλ:X0+λDR对于所有起作用约束∇g(X0)TD≥0\nabla g(X_0)^TD\ge 0g(X0)TD0

3)下降方向:若∃δ∀λ∈[0,δ]f(X0+λD)<f(X0)  ⟺  ∇f(X0)TD<0\exist \delta \forall \lambda\in[0,\delta]f(X_0+\lambda D)\lt f(X_0)\iff \nabla f(X_0)^TD\lt0δλ[0,δ]f(X0+λD)<f(X0)f(X0)TD<0

4)可行方向法:解min⁡η{∇f(Xk)TD<η∇gi(Xk)TD>η−1⪯D⪯1\min \eta\begin{cases}\nabla f(X_k)^TD\lt \eta\\\nabla g_i(X_k)^TD\gt \eta\\ -1\preceq D\preceq 1\end{cases}minηf(Xk)TD<ηgi(Xk)TD>η1D1

  • η<0\eta\lt 0η<0,则对应最优可行下降方向
  • ∣η∣<ϵ|\eta|\lt \epsilonη<ϵ,可停止计算

5)K-T条件:约束极值点满足{∇f(X∗)−∑i=1mγi∇gi(X∗)=0γigi(X∗)=0γi∗≥0\begin{cases}\nabla f(X^*)-\sum\limits_{i=1}^m\gamma_i\nabla g_i(X^*)=0\\\gamma_i g_i(X^*)=0\\\gamma_i^*\ge0\end{cases}f(X)i=1mγigi(X)=0γigi(X)=0γi0

  • 对于凸规划,是充要条件;对于线性规划,是必要条件
  • γi\gamma_iγi称为广义拉格朗日乘子

C2 二次规划

1)二次规划:目标函数为二次形式,且约束条件线性
min⁡f(X)=∑j=1ncjxj+12∑j=1n∑k=1ncjkxjxk,cjk=ckj{∑j=1naijxj+bi≥0xj≥0 \min f(X) =\sum\limits_{j=1}^n c_jx_j + \frac{1}{2}\sum\limits_{j=1}^n\sum\limits_{k=1}^n c_{jk}x_jx_k,c_{jk} = c_{kj}\\ \begin{cases} \sum\limits_{j=1}^n a_{ij} x_j +b_i\ge 0\\ x_j\ge 0 \end{cases} minf(X)=j=1ncjxj+21j=1nk=1ncjkxjxk,cjk=ckjj=1naijxj+bi0xj0
2)K-T解法:问题等价于线性规划问题
min⁡ϕ(Z)=∑j=1nzj{∑i=1maijγn+i+γi−∑k=1ncjkxk+sgn(cj)zj=cj∑j=1naijxj−xn+i+bi=0xj≥0,yj≥0,zj≥0 \min \phi(Z) = \sum\limits_{j=1}^n z_j\\ \begin{cases} \sum\limits_{i=1}^m a_{ij} \gamma_{n+i} +\gamma_i -\sum\limits_{k=1}^n c_{jk}x_k+sgn(c_j)z_j=c_j\\ \sum\limits_{j=1}^n a_{ij}x_j - x_{n+i}+b_i=0\\ x_j\ge 0, y_j \ge 0,z_j \ge 0 \end{cases} minϕ(Z)=j=1nzji=1maijγn+i+γik=1ncjkxk+sgn(cj)zj=cjj=1naijxjxn+i+bi=0xj0,yj0,zj0

  • 初始可行解

{zj=sgn(cj)cjxn+i=bixj=yj=0 \begin{cases} z_j = sgn(c_j)c_j\\ x_{n+i}=b_i\\ x_j=y_j=0 \end{cases} zj=sgn(cj)cjxn+i=bixj=yj=0

C3 制约函数法

1)外点法

  • ϕ(gi(X))={0,t≥0t2,t<0\phi(g_i(X))=\begin{cases} 0,t\ge 0\\t^2,t\lt 0\end{cases}ϕ(gi(X))={0,t0t2,t<0惩罚函数P(X,M)=f(X)+M∑i=1lϕ(gi(x))P(X,M)=f(X)+M\sum\limits_{i=1}^l \phi(g_i(x))P(X,M)=f(X)+Mi=1lϕ(gi(x))
  • 求解无约束极值问题min⁡P(X,Mk)\min P(X,M_k)minP(X,Mk)
  • 若某个gi(X)<−ϵg_i(X)\lt -\epsilongi(X)<ϵ,则增大M,求解min⁡P(X,Mk+1)\min P(X,M_{k+1})minP(X,Mk+1)。多次迭代直至得到可行解

2)内点法

  • g(X,r)=rk∑j=1l1gj(X)g(X,r)=r_k\sum\limits_{j=1}^l\frac{1}{g_j(X)}g(X,r)=rkj=1lgj(X)1g(X,r)=−rk∑j=1llog⁡(gj(X))g(X,r)=-r_k\sum\limits_{j=1}^l \log(g_j(X))g(X,r)=rkj=1llog(gj(X))障碍函数Pˉ(X,r)=f(X)+g(X,r)\bar P(X,r)=f(X)+g(X,r)Pˉ(X,r)=f(X)+g(X,r)

  • 取一可行解X0X_0X0为初始点,求解无约束极值问题min⁡Pˉ(X,rk)\min \bar P(X,r_k)minPˉ(X,rk)

  • g(X,rk)≤ϵg(X,r_k)\le \epsilong(X,rk)ϵ,则终止。否则减小r,计算min⁡Pˉ(X,rk+1)\min \bar P(X,r_{k+1})minPˉ(X,rk+1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值