组合数学$2鸽巢原理与容斥原理

本文深入探讨了组合数学中的鸽巢原理及其变形,包括平均形式和映射形式,以及在密码学、有理数表示、排列问题等领域的应用。同时介绍了容斥原理,展示了如何计算特定排列的数量,并通过错排公式和莫比乌斯反演进行求解。最后,简要提及了Mobius反演的概念和在解决集合包含问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C2 鸽巢与容斥

S1 鸽巢原理

1)鸽巢定理 q i > 0 , ∑ i = 1 n q i − n + 1 q_i\gt 0, \sum\limits_{i=1}^n q_i -n+1 qi>0,i=1nqin+1 个物体放入 n n n 个盒中;则 ∃ i P i = { 第 i 盒 中 至 少 有 q i 个 物 体 } \exist i P_i = \{\small{\mathbb{第i盒中至少有q_i个物体}}\} iPi={iqi} 成立2)变形:

  • 简单形式: q i = 2 , n + 1 q_i = 2,n+1 qi=2,n+1 个物体放入 n n n 盒子,存在一个盒子至少有 2 球
  • 映射形式: ∣ X ∣ = ∣ Y ∣ |\mathbb{X}| = |\mathbb{Y}| X=Y,则 f f f 是单射    ⟺    \iff f f f 是满射
  • 平均形式:
    • ∑ i = 1 n m i n ≥ r   ( ∀ i : m i ∈ Z + )    ⟹    ∃ i , m i ≥ r \frac{\sum\limits_{i=1}^nm_i}{n}\ge r \ (\forall i:m_i\in Z^+)\implies \exist i,m_i\ge r ni=1nmir (i:miZ+)i,mir
    • ∑ i = 1 n m i n < r   ( ∀ i : m i ∈ Z + )    ⟹    ∃ i , m i < r \frac{\sum\limits_{i=1}^nm_i}{n}\lt r \ (\forall i:m_i\in Z^+)\implies \exist i,m_i\lt r ni=1nmi<r (i:miZ+)i,mi<r

3)应用:

  • 中国剩余定理 ( m i , m j ) = 1 , n i < m i    ⟹    ∃ x ∀ i : x ≡ n i ( m o d   m i ) (m_i,m_j) = 1, n_i \lt m_i \implies \exist x\forall i:x\equiv n_i(\mathrm{mod} \ m_i) (mi,mj)=1,ni<mixi:xni(mod mi)

    • 弱化: ( m 1 , m 2 ) = 1 , n i < m i    ⟹    ∃ x : x ≡ n 1 ( m o d   m 1 ) , x ≡ n 2 ( m o d   m 2 ) (m_1,m_2) = 1, n_i \lt m_i \implies \exist x:x\equiv n_1(\mathrm{mod} \ m_1),x\equiv n_2(\mathrm{mod} \ m_2) (m1,m2)=1,ni<mix:xn1(mod m1),xn2(mod m2)

      证明:对 n 1 n_1 n1, n 1 + m 1 n_1 + m_1 n1+m1 ⋯ \cdots , n 1 + ( m 2 − 1 ) m 1 n_1 + (m_2-1)m_1 n1+(m21)m1,假设有两个数模 m 2 m_2 m2 同余

      n 1 + i m 1 ≡ n 1 + j m 1 n_1+im_1 \equiv n_1 + jm_1 n1+im1n1+jm1;即 ( i − j ) m 1 ≡ 0 ( m o d   m 2 ) (i-j)m_1\equiv 0(\mathrm{mod} \ m_2) (ij)m10(mod m2),矛盾

      故必有一个数模 m 2 m_2 m2 余数为 n 2 n_2 n2

    可应用于密码学

  • 有理数一定可以写成有限循环小数

    r = p q r = \frac{p}{q} r=qp,则 1 0 n p / q , n = 0 , 1 , 2 , ⋯ 10^n p / q,n=0,1,2,\cdots 10np/q,n=0,1,2, 当中必有两个同余,即竖式除法过程当中出现两个相同余数,此时除法循环

  • n 2 + 1 n^2 + 1 n2+1 个不等ch实数的排列,一定有 n + 1 n+1 n+1 长度的递增子序列,或 n + 1 n+1 n+1 长度的递减子序列

    m k m_k mk 表示从 k k k 开始的递增子序列最大长度,设 1 ≤ m k ≤ n , k = 1 , 2 , ⋯   , n 2 + 1 1 \le m_k \le n,k=1,2,\cdots,n^2+1 1mkn,k=1,2,,n2+1

    由鸽巢原理,存在 m k 1 = ⋯ = m k n + 1 m_{k_1}=\cdots=m_{k_{n+1}} mk1==mkn+1

    则由 m k m_k mk 的定义, a k 1 < a k 2 < ⋯ < a k n + 1 a_{k_1} \lt a_{k_2} \lt \cdots\lt a_{k_{n+1}} ak1<ak2<<akn+1,得证

  • 1 − 200 1-200 1200 中取 101 101 101 个数,一定有两个不互素

    任意数可表示 n = 2 a ∗ b n = 2^a*b n=2ab 的形式, b b b 为奇数,若 ( n 1 , n 2 ) = 1 (n_1,n_2)=1 (n1,n2)=1 b 1 ≠ b 2 b_1\neq b_2 b1=b2

    但这样的 b b b 只有 100 个,取 101 个数,必有 2 个相同

4)推广:Ramsey 定理 m , n ≥ 3 m,n\ge 3 m,n3 ∃ p : K p → K m , K n \exist p:K_p\to K_m,K_n p:KpKm,Kn

  • 释义:存在 p p p 阶完全图,其边二着色中一定有一个 m m m 阶1色完全子图或 n n n 阶2色完全子图

  • 上界:设 r ( m , n ) r(m,n) r(m,n) 是使得上述条件成立的最小的 p p p,则 r ( m , n ) ≤ r ( m − 1 , n ) + r ( m , n − 1 ) r(m,n)\le r(m-1,n)+r(m,n-1) r(m,n)r(m1,n)+r(m,n1)类比组合数得 r ( m , n ) ≤ C m + n − 2 m − 1 r(m,n)\le C_{m+n-2}^{m-1} r(m,n)Cm+n2m1

    f ( m , n ) = C m + n − 2 m − 1 f(m,n) = C_{m+n-2}^{m-1} f(m,n)=Cm+n2m1,则由 Pascal 公式得 f ( m , n ) = f ( m − 1 , n ) + f ( m , n − 1 ) f(m,n) = f(m-1,n)+f(m,n-1) f(m,n)=f(m1,n)+f(m,n1)

  • 平凡: r ( 2 , n ) = r ( n , 2 ) = n r(2,n)=r(n,2)=n r(2,n)=r(n,2)=n r ( m , n ) = r ( n , m ) r(m,n)=r(n,m) r(m,n)=r(n,m)

  • 归纳证明:

    归纳基础:易得 r ( 2 , n ) = r ( n , 2 ) = n r(2,n)=r(n,2)=n r(2,n)=r(n,2)=n

    归纳假设: m , n ≥ 3 : r ( m − 1 , n ) , r ( m , n − 1 ) m,n\ge 3:r(m-1,n),r(m,n-1) m,n3:r(m1,n),r(m,n1) 存在

    归纳推导:令 p = r ( m − 1 , n ) + r ( m , n − 1 ) p= r(m-1,n)+r(m,n-1) p=r(m1,n)+r(m,n1),考察一个特殊点,其有 B x B_x Bx 蓝边, R x R_x Rx 红边。

    R x + B x = p − 1 = r ( m − 1 , n ) + r ( m , n − 1 ) − 1 R_x+B_x = p -1=r(m-1,n)+r(m,n-1)-1 Rx+Bx=p1=r(m1,n)+r(m,n1)1

    R x ≥ r ( m − 1 , n ) R_x\ge r(m-1,n) Rxr(m1,n) B X ≥ r ( m , n − 1 ) B_X\ge r(m,n-1) BXr(m,n1)

    R x ≥ r ( m − 1 , n ) R_x\ge r(m-1,n) Rxr(m1,n),则显然 p → m − 1 , n p\to m-1,n pm1,n

    若存在一个 m − 1 m-1 m1 阶红色完全图,增加点 x x x 后构成一个 m m m 阶图

    否则,得证

    否则,同理

    故得证

  • 广义 Ramsey 定理:

    K n t K_n^t Knt 表示 n n n 元集中所有 t t t 元子集的集类, t ≥ 2 , q i ≥ t t\ge 2,q_i\ge t t2,qit,则

    ∃ n : K n t → K q 1 t , K q 2 t , ⋯   , K q k t \exist n:K_n^t\to K_{q_1}^t,K_{q_2}^t,\cdots,K_{q_k}^t n:KntKq1t,Kq2t,,Kqkt

    • t = 1 t=1 t=1 时退化为鸽巢原理
    • r t ( t , q 2 , ⋯   , q k ) = min ⁡ { t , r t ( q 2 , ⋯   , q k ) } = r t ( q 2 , ⋯   , q k ) r_t(t,q_2,\cdots,q_k)=\min\{t,r_t(q_2,\cdots,q_k)\}=r_t(q_2,\cdots,q_k) rt(t,q2,,qk)=min{t,rt(q2,,qk)}=rt(q2,,qk)

    K 17 → K 3 , K 3 , K 3 K_{17}\to K_3,K_3,K_3 K17K3,K3,K3

    r 1 ( q 1 , ⋯   , q k ) = ∑ i q i − k + 1 r_1(q_1,\cdots,q_k) = \sum\limits_iq_i -k+1 r1(q1,,qk)=iqik+1

S2 容斥原理

1)容斥原理 ∣ ⋂ 1 n A i ˉ ∣ = ∣ S ∣ − ∑ 1 ≤ i < n ∣ A i ∣ + ∑ 1 ≤ i < j ≤ n ∣ A i ∩ A j ∣ − ⋯ + ( − 1 ) n ⋂ 1 n ∣ A i ∣ |\bigcap_1^n\bar{A_i}| = |S| - \sum\limits_{1\le i\lt n}|A_i|+\sum\limits_{1\le i\lt j\le n}|A_i\cap A_j|-\cdots +(-1)^n\bigcap_1^n|A_i| 1nAiˉ=S1i<nAi+1i<jnAiAj+(1)n1nAi

  • 推论 ∣ ⋃ 1 n A i ∣ = ∑ 1 ≤ i < n ∣ A i ∣ − ∑ 1 ≤ i < j ≤ n ∣ A i ∩ A j ∣ + ⋯ − ( − 1 ) n ⋂ 1 n ∣ A i ∣ |\bigcup_1^n A_i| = \sum\limits_{1\le i\lt n}|A_i|-\sum\limits_{1\le i\lt j\le n}|A_i\cap A_j|+\cdots -(-1)^n\bigcap_1^n|A_i| 1nAi=1i<nAi1i<jnAiAj+(1)n1nAi

2)错位排列问题 1 … n 1\dots n 1n 的排列中, ∀ i : i \forall i:i i:i 不在第 i i i 位的排列

  • 解法:令 A i = { i   在 第   i   位 的 排 列 } A_i = \{i \ \small{\mathbb{在第}} \ i \ \small{\mathbb{位的排列}}\} Ai={i  i }
  • 级数解 D n = n ! ∑ k = 0 n ( − 1 ) k k ! D_n = n!\sum\limits_{k=0}^n\frac{(-1)^k}{k!} Dn=n!k=0nk!(1)k
  • 递推 D n = ( n − 1 ) ( D n − 2 + D n − 1 ) D_n = (n-1)(D_{n-2} +D_{n-1}) Dn=(n1)(Dn2+Dn1) 进一步 D n = n D n − 1 + ( − 1 ) n D_n = nD_{n-1}+(-1)^n Dn=nDn1+(1)n(便于计算)
    • D n D_n Dn 为偶数,当前仅当 n n n 是奇数
    • 指数生成函数 e − x 1 − x \frac{e^{-x}}{1-x} 1xex (藉由 D n = n ! D n − 1 + ( − 1 ) n D_n = n!D_{n-1} + (-1)^n Dn=n!Dn1+(1)n)
  • 推论:错排概率趋近 1 e \frac{1}{e} e1

3)多禁止位排列 X i X_i Xi 表示 i i i 不能占据的位置

  • 等价问题: n × n n\times n n×n 棋盘上不能同行同列放置的棋子, X i X_i Xi 表示第 i i i 列上的禁止位
    请添加图片描述

  • 形式解 ∣ ⋂ 1 n A i ˉ ∣ = ∑ k = 0 n ( − 1 ) k r k ( n − k ) ! |\bigcap_1^n\bar{A_i}| = \sum\limits_{k=0}^n (-1)^kr_k(n-k)! 1nAiˉ=k=0n(1)krk(nk)!。其中 r k ( ≥ 1 ) r_{k(\ge 1)} rk(1) k k k 个棋子放在禁止位上的方法数, r 0 = 1 r_0 = 1 r0=1 r 1 r_1 r1 为禁止位总数

  • 和式解 ∑ π ∈ π n Π i = 1 n a i π ( i ) \sum_{\pi \in \pi_n}\Pi_{i=1}^n a_{i\pi(i)} ππnΠi=1naiπ(i),称棋盘 A A A 的不变式。由莫比乌斯反演得 ∑ S ⊆ X n ( − 1 ) n − ∣ S ∣ ∏ i = 1 n ∑ j ∈ S a i j \sum\limits_{S\sube X_n}(-1)^{n-|S|}\prod_{i=1}^n\sum\limits_{j\in S}a_{ij} SXn(1)nSi=1njSaij,算法复杂度 O ( 2 n ) O(2^n) O(2n)

4)相对禁止位排列

  • 特例:重新排列使得每个人前面的人不同于第一次的人,则 r k = C n − 1 k r_k = C_{n-1}^k rk=Cn1k
    • Q n = D n + D n − 1 Q_n = D_n + D_{n-1} Qn=Dn+Dn1
  • 特例:2-禁止位排列(禁止 A i i , A i , i + 1 A 1 , n A_{ii},A_{i,i+1}A_{1,n} Aii,Ai,i+1A1,n),解为 r k = 2 n 2 n − k C 2 n − k k r_k=\frac{2n}{2n-k}C_{2n-k}^k rk=2nk2nC2nkk

5)推广:若 q k q_k qk 表示恰好有 k k k 个性质的元素个数, p k p_k pk 表示至少有 k k k 个性质的元素个数,则 q k = ∑ i = k n ( − 1 ) i − k C i i − k p i q_k = \sum\limits_{i=k}^n (-1)^{i-k}C_i^{i-k}p_i qk=i=kn(1)ikCiikpi

S3 Mobius 反演

1)偏序卷积 f ∘ g = ∑ x ≺ z ≺ y f ( x , z ) g ( z , y ) f\circ g = \sum \limits_{x\prec z\prec y} f(x,z)g(z,y) fg=xzyf(x,z)g(z,y)

  • 满足结合律: ( f ∘ g ) ∘ h = f ∘ ( g ∘ g ) (f\circ g) \circ h = f\circ (g\circ g) (fg)h=f(gg) ,不交换

  • 幺元:克罗内克δ函数 δ ( x , y ) = { 1 , x = y 0 , x ≠ y \delta (x,y) = \begin{cases} 1, &x = y\\0, &x\neq y \end{cases} δ(x,y)={1,0,x=yx=y

  • 群逆:若偏序集上二元实值函数满足 ∀ x , f ( x , x ) ≠ 0 \forall x,f(x,x)\neq 0 x,f(x,x)=0,则其存在逆函数

    g ( x , y ) = { 1 f ( x , x ) , x = y − ∑ x ⪯ z ≺ y g ( x , z ) f ( z , y ) f ( y , y ) x ≺ y g(x,y) = \begin{cases} \frac{1}{f(x,x)}, &x = y\\ -\sum\limits_{x\preceq z \prec y}g(x,z) \frac{f(z,y)}{f(y,y)} & x\prec y \end{cases} g(x,y)=f(x,x)1,xzyg(x,z)f(y,y)f(z,y)x=yxy

2)偏序集特征函数: ζ ( x , y ) = { 1 , x ⪯ y 0 , x ⪯̸ y \zeta(x,y) = \begin{cases} 1, x\preceq y\\ 0,x \not \preceq y \end{cases} ζ(x,y)={1,xy0,xy

  • 逆:莫比乌斯函数 μ ( x , y ) \mu (x,y) μ(x,y)

    幂集包含关系 < P ( X ) , ⊆ \mathscr{P}(\mathbb{X}),\sube P(X),>: μ ( A , B ) = ( − 1 ) B − A \mu(\mathbb{A,B}) = (-1)^{\mathbb{B-A}} μ(A,B)=(1)BA

    线性有序集: μ ( x , y ) = { 1 , x = y − 1 , y = x + 1 ( 偏 序 意 义 上 ) 0 , o t h e r w i s e \mu(x,y) = \begin{cases} 1,&x = y\\ -1, & y = x + 1(\mathbb{偏序意义上})\\ 0, & \rm otherwise \end{cases} μ(x,y)=1,1,0,x=yy=x+1()otherwise

3)Mobius(莫比乌斯)反演

  • 若偏序集上实值函数 F , G F,G F,G 满足 G ( x ) = ∑ { y ⪯ x } F ( y ) G(x) = \sum\limits_{\{y\preceq x\}}F(y) G(x)={yx}F(y)
    F ( x ) = ∑ { x : y ≤ x } μ ( y , x ) G ( y ) F(x) = \sum\limits_{\{x:y\le x\}}\mu(y,x)G(y) F(x)={x:yx}μ(y,x)G(y)
  • 应用:幂集上实值函数 F , G : P ( X n ) → R F,G:\mathscr{P}(X_n)\to \mathfrak{R} F,G:P(Xn)R 满足 G ( X ) = ∑ Y ⊆ X F ( Y ) G(X) = \sum\limits_{Y\sube X}F(Y) G(X)=YXF(Y)

F ( X ) = ∑ Y ⊆ X ( − 1 ) ∣ X ∣ − ∣ Y ∣ G ( Y ) F(X) = \sum\limits_{Y\sube X} (-1)^{|X|-|Y|}G(Y) F(X)=YX(1)XYG(Y)

4)偏序直积结构 ( x 1 , y 1 ) ⪯ ( x 2 , y 2 )    ⟺    x 1 ⪯ x 2 ∧ y 1 ⪯ y 2 (x_1,y_1)\preceq (x_2,y_2)\iff x_1\preceq x_2 \wedge y_1 \preceq y_2 (x1,y1)(x2,y2)x1x2y1y2

  • Mobious 函数 μ = μ 1 ⋅ μ 2 \mu = \mu_1 \cdot \mu_2 μ=μ1μ2
  • 应用:Euler 函数
    • 整除是多重偏序直积,每一维是一个线性序

      μ ( 1 , n ) = ∏ i = 1 k μ ( 1 , p i α i ) = { 1 , n = 1 ( − 1 ) k , ∀ i   α i = 1 0 , o r t h e r w i s e \mu(1,n) = \prod_{i=1}^k \mu (1,p_i^{\alpha_i}) = \begin{cases} 1,& n =1\\ (-1)^k,&\forall i \ \alpha_i = 1\\ 0,&\rm ortherwise \end{cases} μ(1,n)=i=1kμ(1,piαi)=1,(1)k,0,n=1i αi=1ortherwise

    • 计算:

      • μ ( 1 , n ) = − ∑ { m ∣ n , m ≠ n } μ ( 1 , m ) \mu(1,n) = -\sum\limits_{\{m\mid n, m \neq n\}}\mu(1,m) μ(1,n)={mn,m=n}μ(1,m)
      • μ ( a , b ) = μ ( 1 , b a ) , a ∣ b \mu(a,b) = \mu (1,\frac{b}{a}),a\mid b μ(a,b)=μ(1,ab),ab
    • ϕ ( n ) = n ∏ i = 0 k ( 1 − 1 p i ) = C a r d   { m ∣ m ≤ n   ∧   ( m , n ) = 1 } \phi(n) = n\prod\limits_{i=0}^k(1-\frac{1}{p_i})= \mathrm{Card} \ \{m|m\le n \ \wedge \ (m,n) = 1 \} ϕ(n)=ni=0k(1pi1)=Card {mmn  (m,n)=1}

5)容斥原理是 Mobius 的特例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值