C2 鸽巢与容斥
S1 鸽巢原理
1)鸽巢定理
:
q
i
>
0
,
∑
i
=
1
n
q
i
−
n
+
1
q_i\gt 0, \sum\limits_{i=1}^n q_i -n+1
qi>0,i=1∑nqi−n+1 个物体放入
n
n
n 个盒中;则
∃
i
P
i
=
{
第
i
盒
中
至
少
有
q
i
个
物
体
}
\exist i P_i = \{\small{\mathbb{第i盒中至少有q_i个物体}}\}
∃iPi={第i盒中至少有qi个物体} 成立2)变形:
- 简单形式: q i = 2 , n + 1 q_i = 2,n+1 qi=2,n+1 个物体放入 n n n 盒子,存在一个盒子至少有 2 球
- 映射形式: ∣ X ∣ = ∣ Y ∣ |\mathbb{X}| = |\mathbb{Y}| ∣X∣=∣Y∣,则 f f f 是单射 ⟺ \iff ⟺ f f f 是满射
- 平均形式:
- ∑ i = 1 n m i n ≥ r ( ∀ i : m i ∈ Z + ) ⟹ ∃ i , m i ≥ r \frac{\sum\limits_{i=1}^nm_i}{n}\ge r \ (\forall i:m_i\in Z^+)\implies \exist i,m_i\ge r ni=1∑nmi≥r (∀i:mi∈Z+)⟹∃i,mi≥r
- ∑ i = 1 n m i n < r ( ∀ i : m i ∈ Z + ) ⟹ ∃ i , m i < r \frac{\sum\limits_{i=1}^nm_i}{n}\lt r \ (\forall i:m_i\in Z^+)\implies \exist i,m_i\lt r ni=1∑nmi<r (∀i:mi∈Z+)⟹∃i,mi<r
3)应用:
-
中国剩余定理
: ( m i , m j ) = 1 , n i < m i ⟹ ∃ x ∀ i : x ≡ n i ( m o d m i ) (m_i,m_j) = 1, n_i \lt m_i \implies \exist x\forall i:x\equiv n_i(\mathrm{mod} \ m_i) (mi,mj)=1,ni<mi⟹∃x∀i:x≡ni(mod mi)-
弱化: ( m 1 , m 2 ) = 1 , n i < m i ⟹ ∃ x : x ≡ n 1 ( m o d m 1 ) , x ≡ n 2 ( m o d m 2 ) (m_1,m_2) = 1, n_i \lt m_i \implies \exist x:x\equiv n_1(\mathrm{mod} \ m_1),x\equiv n_2(\mathrm{mod} \ m_2) (m1,m2)=1,ni<mi⟹∃x:x≡n1(mod m1),x≡n2(mod m2)
证明:对 n 1 n_1 n1, n 1 + m 1 n_1 + m_1 n1+m1, ⋯ \cdots ⋯ , n 1 + ( m 2 − 1 ) m 1 n_1 + (m_2-1)m_1 n1+(m2−1)m1,假设有两个数模 m 2 m_2 m2 同余
则 n 1 + i m 1 ≡ n 1 + j m 1 n_1+im_1 \equiv n_1 + jm_1 n1+im1≡n1+jm1;即 ( i − j ) m 1 ≡ 0 ( m o d m 2 ) (i-j)m_1\equiv 0(\mathrm{mod} \ m_2) (i−j)m1≡0(mod m2),矛盾
故必有一个数模 m 2 m_2 m2 余数为 n 2 n_2 n2
可应用于密码学
-
-
有理数一定可以写成有限循环小数
设 r = p q r = \frac{p}{q} r=qp,则 1 0 n p / q , n = 0 , 1 , 2 , ⋯ 10^n p / q,n=0,1,2,\cdots 10np/q,n=0,1,2,⋯ 当中必有两个同余,即竖式除法过程当中出现两个相同余数,此时除法循环
-
n 2 + 1 n^2 + 1 n2+1 个不等ch实数的排列,一定有 n + 1 n+1 n+1 长度的递增子序列,或 n + 1 n+1 n+1 长度的递减子序列
令 m k m_k mk 表示从 k k k 开始的递增子序列最大长度,设 1 ≤ m k ≤ n , k = 1 , 2 , ⋯ , n 2 + 1 1 \le m_k \le n,k=1,2,\cdots,n^2+1 1≤mk≤n,k=1,2,⋯,n2+1
由鸽巢原理,存在 m k 1 = ⋯ = m k n + 1 m_{k_1}=\cdots=m_{k_{n+1}} mk1=⋯=mkn+1
则由 m k m_k mk 的定义, a k 1 < a k 2 < ⋯ < a k n + 1 a_{k_1} \lt a_{k_2} \lt \cdots\lt a_{k_{n+1}} ak1<ak2<⋯<akn+1,得证
-
1 − 200 1-200 1−200 中取 101 101 101 个数,一定有两个不互素
任意数可表示 n = 2 a ∗ b n = 2^a*b n=2a∗b 的形式, b b b 为奇数,若 ( n 1 , n 2 ) = 1 (n_1,n_2)=1 (n1,n2)=1 则 b 1 ≠ b 2 b_1\neq b_2 b1=b2
但这样的 b b b 只有 100 个,取 101 个数,必有 2 个相同
4)推广:Ramsey 定理
m
,
n
≥
3
m,n\ge 3
m,n≥3,
∃
p
:
K
p
→
K
m
,
K
n
\exist p:K_p\to K_m,K_n
∃p:Kp→Km,Kn
-
释义:存在 p p p 阶完全图,其边二着色中一定有一个 m m m 阶1色完全子图或 n n n 阶2色完全子图
-
上界:设 r ( m , n ) r(m,n) r(m,n) 是使得上述条件成立的最小的 p p p,则 r ( m , n ) ≤ r ( m − 1 , n ) + r ( m , n − 1 ) r(m,n)\le r(m-1,n)+r(m,n-1) r(m,n)≤r(m−1,n)+r(m,n−1)类比组合数得 r ( m , n ) ≤ C m + n − 2 m − 1 r(m,n)\le C_{m+n-2}^{m-1} r(m,n)≤Cm+n−2m−1
令 f ( m , n ) = C m + n − 2 m − 1 f(m,n) = C_{m+n-2}^{m-1} f(m,n)=Cm+n−2m−1,则由 Pascal 公式得 f ( m , n ) = f ( m − 1 , n ) + f ( m , n − 1 ) f(m,n) = f(m-1,n)+f(m,n-1) f(m,n)=f(m−1,n)+f(m,n−1)
-
平凡: r ( 2 , n ) = r ( n , 2 ) = n r(2,n)=r(n,2)=n r(2,n)=r(n,2)=n; r ( m , n ) = r ( n , m ) r(m,n)=r(n,m) r(m,n)=r(n,m)
-
归纳证明:
归纳基础:易得 r ( 2 , n ) = r ( n , 2 ) = n r(2,n)=r(n,2)=n r(2,n)=r(n,2)=n
归纳假设: m , n ≥ 3 : r ( m − 1 , n ) , r ( m , n − 1 ) m,n\ge 3:r(m-1,n),r(m,n-1) m,n≥3:r(m−1,n),r(m,n−1) 存在
归纳推导:令 p = r ( m − 1 , n ) + r ( m , n − 1 ) p= r(m-1,n)+r(m,n-1) p=r(m−1,n)+r(m,n−1),考察一个特殊点,其有 B x B_x Bx 蓝边, R x R_x Rx 红边。
则 R x + B x = p − 1 = r ( m − 1 , n ) + r ( m , n − 1 ) − 1 R_x+B_x = p -1=r(m-1,n)+r(m,n-1)-1 Rx+Bx=p−1=r(m−1,n)+r(m,n−1)−1
得 R x ≥ r ( m − 1 , n ) R_x\ge r(m-1,n) Rx≥r(m−1,n) 或 B X ≥ r ( m , n − 1 ) B_X\ge r(m,n-1) BX≥r(m,n−1)
若 R x ≥ r ( m − 1 , n ) R_x\ge r(m-1,n) Rx≥r(m−1,n),则显然 p → m − 1 , n p\to m-1,n p→m−1,n
若存在一个 m − 1 m-1 m−1 阶红色完全图,增加点 x x x 后构成一个 m m m 阶图
否则,得证
否则,同理
故得证
-
广义 Ramsey 定理:
K n t K_n^t Knt 表示 n n n 元集中所有 t t t 元子集的集类, t ≥ 2 , q i ≥ t t\ge 2,q_i\ge t t≥2,qi≥t,则
∃ n : K n t → K q 1 t , K q 2 t , ⋯ , K q k t \exist n:K_n^t\to K_{q_1}^t,K_{q_2}^t,\cdots,K_{q_k}^t ∃n:Knt→Kq1t,Kq2t,⋯,Kqkt
- t = 1 t=1 t=1 时退化为鸽巢原理
- r t ( t , q 2 , ⋯ , q k ) = min { t , r t ( q 2 , ⋯ , q k ) } = r t ( q 2 , ⋯ , q k ) r_t(t,q_2,\cdots,q_k)=\min\{t,r_t(q_2,\cdots,q_k)\}=r_t(q_2,\cdots,q_k) rt(t,q2,⋯,qk)=min{t,rt(q2,⋯,qk)}=rt(q2,⋯,qk)
K 17 → K 3 , K 3 , K 3 K_{17}\to K_3,K_3,K_3 K17→K3,K3,K3
r 1 ( q 1 , ⋯ , q k ) = ∑ i q i − k + 1 r_1(q_1,\cdots,q_k) = \sum\limits_iq_i -k+1 r1(q1,⋯,qk)=i∑qi−k+1
S2 容斥原理
1)容斥原理
:
∣
⋂
1
n
A
i
ˉ
∣
=
∣
S
∣
−
∑
1
≤
i
<
n
∣
A
i
∣
+
∑
1
≤
i
<
j
≤
n
∣
A
i
∩
A
j
∣
−
⋯
+
(
−
1
)
n
⋂
1
n
∣
A
i
∣
|\bigcap_1^n\bar{A_i}| = |S| - \sum\limits_{1\le i\lt n}|A_i|+\sum\limits_{1\le i\lt j\le n}|A_i\cap A_j|-\cdots +(-1)^n\bigcap_1^n|A_i|
∣⋂1nAiˉ∣=∣S∣−1≤i<n∑∣Ai∣+1≤i<j≤n∑∣Ai∩Aj∣−⋯+(−1)n⋂1n∣Ai∣
推论
: ∣ ⋃ 1 n A i ∣ = ∑ 1 ≤ i < n ∣ A i ∣ − ∑ 1 ≤ i < j ≤ n ∣ A i ∩ A j ∣ + ⋯ − ( − 1 ) n ⋂ 1 n ∣ A i ∣ |\bigcup_1^n A_i| = \sum\limits_{1\le i\lt n}|A_i|-\sum\limits_{1\le i\lt j\le n}|A_i\cap A_j|+\cdots -(-1)^n\bigcap_1^n|A_i| ∣⋃1nAi∣=1≤i<n∑∣Ai∣−1≤i<j≤n∑∣Ai∩Aj∣+⋯−(−1)n⋂1n∣Ai∣
2)错位排列问题
:
1
…
n
1\dots n
1…n 的排列中,
∀
i
:
i
\forall i:i
∀i:i 不在第
i
i
i 位的排列
- 解法:令 A i = { i 在 第 i 位 的 排 列 } A_i = \{i \ \small{\mathbb{在第}} \ i \ \small{\mathbb{位的排列}}\} Ai={i 在第 i 位的排列}
级数解
: D n = n ! ∑ k = 0 n ( − 1 ) k k ! D_n = n!\sum\limits_{k=0}^n\frac{(-1)^k}{k!} Dn=n!k=0∑nk!(−1)k递推
: D n = ( n − 1 ) ( D n − 2 + D n − 1 ) D_n = (n-1)(D_{n-2} +D_{n-1}) Dn=(n−1)(Dn−2+Dn−1) 进一步 D n = n D n − 1 + ( − 1 ) n D_n = nD_{n-1}+(-1)^n Dn=nDn−1+(−1)n(便于计算)- D n D_n Dn 为偶数,当前仅当 n n n 是奇数
指数生成函数
: e − x 1 − x \frac{e^{-x}}{1-x} 1−xe−x (藉由 D n = n ! D n − 1 + ( − 1 ) n D_n = n!D_{n-1} + (-1)^n Dn=n!Dn−1+(−1)n)
- 推论:错排概率趋近 1 e \frac{1}{e} e1
3)多禁止位排列
:
X
i
X_i
Xi 表示
i
i
i 不能占据的位置
-
等价问题: n × n n\times n n×n 棋盘上不能同行同列放置的棋子, X i X_i Xi 表示第 i i i 列上的禁止位
-
形式解
: ∣ ⋂ 1 n A i ˉ ∣ = ∑ k = 0 n ( − 1 ) k r k ( n − k ) ! |\bigcap_1^n\bar{A_i}| = \sum\limits_{k=0}^n (-1)^kr_k(n-k)! ∣⋂1nAiˉ∣=k=0∑n(−1)krk(n−k)!。其中 r k ( ≥ 1 ) r_{k(\ge 1)} rk(≥1) 为 k k k 个棋子放在禁止位上的方法数, r 0 = 1 r_0 = 1 r0=1, r 1 r_1 r1 为禁止位总数 -
和式解
: ∑ π ∈ π n Π i = 1 n a i π ( i ) \sum_{\pi \in \pi_n}\Pi_{i=1}^n a_{i\pi(i)} ∑π∈πnΠi=1naiπ(i),称棋盘 A A A 的不变式。由莫比乌斯反演得 ∑ S ⊆ X n ( − 1 ) n − ∣ S ∣ ∏ i = 1 n ∑ j ∈ S a i j \sum\limits_{S\sube X_n}(-1)^{n-|S|}\prod_{i=1}^n\sum\limits_{j\in S}a_{ij} S⊆Xn∑(−1)n−∣S∣∏i=1nj∈S∑aij,算法复杂度 O ( 2 n ) O(2^n) O(2n)
4)相对禁止位排列
:
- 特例:重新排列使得每个人前面的人不同于第一次的人,则
r
k
=
C
n
−
1
k
r_k = C_{n-1}^k
rk=Cn−1k
- Q n = D n + D n − 1 Q_n = D_n + D_{n-1} Qn=Dn+Dn−1
- 特例:2-禁止位排列(禁止 A i i , A i , i + 1 A 1 , n A_{ii},A_{i,i+1}A_{1,n} Aii,Ai,i+1A1,n),解为 r k = 2 n 2 n − k C 2 n − k k r_k=\frac{2n}{2n-k}C_{2n-k}^k rk=2n−k2nC2n−kk
5)推广
:若
q
k
q_k
qk 表示恰好有
k
k
k 个性质的元素个数,
p
k
p_k
pk 表示至少有
k
k
k 个性质的元素个数,则
q
k
=
∑
i
=
k
n
(
−
1
)
i
−
k
C
i
i
−
k
p
i
q_k = \sum\limits_{i=k}^n (-1)^{i-k}C_i^{i-k}p_i
qk=i=k∑n(−1)i−kCii−kpi
S3 Mobius 反演
1)偏序卷积
:
f
∘
g
=
∑
x
≺
z
≺
y
f
(
x
,
z
)
g
(
z
,
y
)
f\circ g = \sum \limits_{x\prec z\prec y} f(x,z)g(z,y)
f∘g=x≺z≺y∑f(x,z)g(z,y)
-
满足结合律: ( f ∘ g ) ∘ h = f ∘ ( g ∘ g ) (f\circ g) \circ h = f\circ (g\circ g) (f∘g)∘h=f∘(g∘g) ,不交换
-
幺元:克罗内克δ函数 δ ( x , y ) = { 1 , x = y 0 , x ≠ y \delta (x,y) = \begin{cases} 1, &x = y\\0, &x\neq y \end{cases} δ(x,y)={1,0,x=yx=y
-
群逆:若偏序集上二元实值函数满足 ∀ x , f ( x , x ) ≠ 0 \forall x,f(x,x)\neq 0 ∀x,f(x,x)=0,则其存在逆函数
g ( x , y ) = { 1 f ( x , x ) , x = y − ∑ x ⪯ z ≺ y g ( x , z ) f ( z , y ) f ( y , y ) x ≺ y g(x,y) = \begin{cases} \frac{1}{f(x,x)}, &x = y\\ -\sum\limits_{x\preceq z \prec y}g(x,z) \frac{f(z,y)}{f(y,y)} & x\prec y \end{cases} g(x,y)=⎩⎨⎧f(x,x)1,−x⪯z≺y∑g(x,z)f(y,y)f(z,y)x=yx≺y
2)偏序集特征函数: ζ ( x , y ) = { 1 , x ⪯ y 0 , x ⪯̸ y \zeta(x,y) = \begin{cases} 1, x\preceq y\\ 0,x \not \preceq y \end{cases} ζ(x,y)={1,x⪯y0,x⪯y
-
逆:莫比乌斯函数 μ ( x , y ) \mu (x,y) μ(x,y)
幂集包含关系 < P ( X ) , ⊆ \mathscr{P}(\mathbb{X}),\sube P(X),⊆>: μ ( A , B ) = ( − 1 ) B − A \mu(\mathbb{A,B}) = (-1)^{\mathbb{B-A}} μ(A,B)=(−1)B−A
线性有序集: μ ( x , y ) = { 1 , x = y − 1 , y = x + 1 ( 偏 序 意 义 上 ) 0 , o t h e r w i s e \mu(x,y) = \begin{cases} 1,&x = y\\ -1, & y = x + 1(\mathbb{偏序意义上})\\ 0, & \rm otherwise \end{cases} μ(x,y)=⎩⎪⎨⎪⎧1,−1,0,x=yy=x+1(偏序意义上)otherwise
3)Mobius(莫比乌斯)反演
:
- 若偏序集上实值函数
F
,
G
F,G
F,G 满足
G
(
x
)
=
∑
{
y
⪯
x
}
F
(
y
)
G(x) = \sum\limits_{\{y\preceq x\}}F(y)
G(x)={y⪯x}∑F(y),
则 F ( x ) = ∑ { x : y ≤ x } μ ( y , x ) G ( y ) F(x) = \sum\limits_{\{x:y\le x\}}\mu(y,x)G(y) F(x)={x:y≤x}∑μ(y,x)G(y) - 应用:幂集上实值函数 F , G : P ( X n ) → R F,G:\mathscr{P}(X_n)\to \mathfrak{R} F,G:P(Xn)→R 满足 G ( X ) = ∑ Y ⊆ X F ( Y ) G(X) = \sum\limits_{Y\sube X}F(Y) G(X)=Y⊆X∑F(Y)
则 F ( X ) = ∑ Y ⊆ X ( − 1 ) ∣ X ∣ − ∣ Y ∣ G ( Y ) F(X) = \sum\limits_{Y\sube X} (-1)^{|X|-|Y|}G(Y) F(X)=Y⊆X∑(−1)∣X∣−∣Y∣G(Y)
4)偏序直积结构
:
(
x
1
,
y
1
)
⪯
(
x
2
,
y
2
)
⟺
x
1
⪯
x
2
∧
y
1
⪯
y
2
(x_1,y_1)\preceq (x_2,y_2)\iff x_1\preceq x_2 \wedge y_1 \preceq y_2
(x1,y1)⪯(x2,y2)⟺x1⪯x2∧y1⪯y2
Mobious 函数
: μ = μ 1 ⋅ μ 2 \mu = \mu_1 \cdot \mu_2 μ=μ1⋅μ2- 应用:
Euler 函数
-
整除是多重偏序直积,每一维是一个线性序
μ ( 1 , n ) = ∏ i = 1 k μ ( 1 , p i α i ) = { 1 , n = 1 ( − 1 ) k , ∀ i α i = 1 0 , o r t h e r w i s e \mu(1,n) = \prod_{i=1}^k \mu (1,p_i^{\alpha_i}) = \begin{cases} 1,& n =1\\ (-1)^k,&\forall i \ \alpha_i = 1\\ 0,&\rm ortherwise \end{cases} μ(1,n)=∏i=1kμ(1,piαi)=⎩⎪⎨⎪⎧1,(−1)k,0,n=1∀i αi=1ortherwise
-
计算:
- μ ( 1 , n ) = − ∑ { m ∣ n , m ≠ n } μ ( 1 , m ) \mu(1,n) = -\sum\limits_{\{m\mid n, m \neq n\}}\mu(1,m) μ(1,n)=−{m∣n,m=n}∑μ(1,m)
- μ ( a , b ) = μ ( 1 , b a ) , a ∣ b \mu(a,b) = \mu (1,\frac{b}{a}),a\mid b μ(a,b)=μ(1,ab),a∣b
-
ϕ ( n ) = n ∏ i = 0 k ( 1 − 1 p i ) = C a r d { m ∣ m ≤ n ∧ ( m , n ) = 1 } \phi(n) = n\prod\limits_{i=0}^k(1-\frac{1}{p_i})= \mathrm{Card} \ \{m|m\le n \ \wedge \ (m,n) = 1 \} ϕ(n)=ni=0∏k(1−pi1)=Card {m∣m≤n ∧ (m,n)=1}
-
5)容斥原理是 Mobius 的特例