
Raft 原理&各常用工具的具体实现细节
文章平均质量分 94
分布式中的 Raft 详解、源码原理分析
.Shu.
Java|Golang|PHP 服务端开发 腾讯->快手->腾讯->阿里 DB底层研究爱好者
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
TiKV Joint Consensus机制深度解析
本文探讨Raft成员变更的挑战与解决方案,重点分析Joint Consensus机制。传统直接变更可能导致脑裂问题,而联合共识通过两阶段配置变更(C_old→C_old,new→C_new)实现安全过渡,需新旧多数派确认。实现上采用配置状态机设计,通过特殊日志条目记录变更流程,包含投票计数和状态管理等核心逻辑。文中详细解析了两阶段提交流程、源码实现(如配置变更提案处理、状态管理)及故障恢复机制(Leader故障处理、网络分区回滚)。最后探讨了并行配置变更等性能优化策略,为分布式系统提供安全的动态成员变更方案原创 2025-09-14 11:49:51 · 896 阅读 · 0 评论 -
Nacos基于HTTP协议的Raft日志复制实现深度解析
Nacos Raft通信架构采用HTTP协议实现,整体架构包含Leader节点与多个Follower节点组成的集群。日志复制流程中,Leader将客户端请求封装为LogEntry并通过HTTP并发发送给Followers,多数节点成功后才提交日志。Follower通过PrevLogIndex/Term检查实现一致性,状态机应用日志变更。优化策略包括批量日志复制和流水线处理,通过缓冲队列减少网络开销。故障处理采用指数退避重试机制(最大3次,间隔100/500/1000ms)。源码层面展示了HTTP请求构造、日原创 2025-09-14 11:51:08 · 960 阅读 · 0 评论 -
TiKV Raft日志复制源码深度解析
文章摘要:本文详细介绍了Raft协议中Leader和Follower处理AppendEntries的核心流程。Leader端包含日志追加、消息构造与发送、响应处理等步骤,实现了日志复制和一致性维护。Follower端重点描述了一致性检查机制,包括PrevLogIndex验证、冲突检测等关键逻辑。源码分析展示了NextIndex调整、日志匹配等具体实现,完整呈现了Raft强一致性的保障机制。原创 2025-09-14 11:39:42 · 702 阅读 · 0 评论 -
Raft 算法详解【原理、流程、安全性、TiKV & Nacos 源码实现浅析】
Raft分布式一致性算法解析 摘要:Raft是一种创新的分布式一致性算法,由Ongaro和Ousterhout于2014年提出,旨在替代Paxos的同时提高可理解性。该算法将问题分解为选举、日志复制和安全性三个独立模块,通过明确的领导者机制确保系统一致性。Raft的核心特性包括:1) 三种角色状态(Leader/Follower/Candidate)的动态转换;2) 基于任期的选举机制;3) 日志匹配原则保证数据一致性;4) 多数投票规则防止脑裂。TiKV等工程实现通过预投票和批量提交等优化机制,进一步提升原创 2025-09-14 11:37:39 · 671 阅读 · 0 评论 -
TiKV Multi-Raft 机制深度解析
Multi-Raft架构通过Region分片实现数据水平扩展,每个Region对应一个Raft Group,由PD组件统一调度。核心包含Region元数据管理、RaftStore存储引擎和Peer处理流程,支持自动分裂/合并与负载均衡。事务处理采用Percolator模型,针对跨Region事务优化并行预写。系统通过动态Region调度实现高可用与线性扩展能力,关键设计包括: Region与Raft Group的映射关系 分布式调度器实现负载均衡 事务处理的多Region协同机制 自动分裂合并的弹性伸缩能力原创 2025-09-14 11:38:37 · 521 阅读 · 0 评论