刚刚使用SKLearn学习机器学习进行数据分析,分享一些概念和想法,希望可以大家一起讨论,如果理解或者表达有不准确的地方,请多多指点,不吝赐教,非常感谢~~
涉及决策树其他参数:
请转至《DecisionTreeClassifier与红酒数据集(criterion及创建一个树)》:https://blog.csdn.net/weixin_42969619/article/details/98884082
以及《sklearn的DecisionTreeClassifier与红酒数据集(参数random_state & splitter )》:
https://blog.csdn.net/weixin_42969619/article/details/99301017
以及《sklearn的DecisionTreeClassifier与红酒数据集(剪枝参数)》:
本文将继续介绍sklearn的决策树的属性与接口,属性是在模型训练之后,能够调用查看的模型的各种性质:
- 查看特征变量的“重要性”的分数—— .feature_importances_
# 查看特征变量的“重要性”
clf.feature_importances_
# 使用zip()连接特征变量名(list)和“重要性”(array)连接起来
[*zip(feature_name,clf.feature_importances_)]
-----------------------
# 结果为
[('酒精', 0.03638751716910407),
('苹果酸', 0.0),
('灰', 0.0),
('灰的碱性', 0.0),
('镁', 0.0),
(<