(01)ORB-SLAM2源码无死角解析-(18) SVD奇异值分解→求解Homography,Fundamental矩阵,了解矩阵自由度

本文详细介绍了ORB-SLAM2中SVD奇异值分解在求解Homography和Fundamental矩阵的过程。通过分析矩阵自由度和秩的概念,解释了如何使用SVD来解决超定方程,并给出了源码中的关键函数ComputeH21()和ComputeF21()。文章还探讨了Homography和Fundamental矩阵的自由度问题,以及如何确保Fundamental矩阵的最后一个奇异值为0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的(01)ORB-SLAM2源码无死角解析链接如下:
(01)ORB-SLAM2源码无死角解析-(00)目录_最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/123092196
 
文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证} 文末正下方中心

本文主要介绍ORB-SLAM2中的一些关键实现细节,包括词袋建立、关键帧选择策略、词袋检索和位姿估计。此外还详细介绍了视觉里程计、闭环检测、地图维护等模块的实现细节。 首先,ORB-SLAM2通过建立词袋的方式实现了特征点的高效匹配。ORB-SLAM2采用了二叉树的结构生成了一个层次化的词袋,该词袋可以快速地检索到最相似的词,并将该词作为当前帧所属的类别。在后续的帧匹配过程中,ORB-SLAM2只需要搜索与当前帧类别相同的关键帧中的点即可,大大加快了匹配的效率。 其次,ORB-SLAM2采用了一种称为“闭线性三角测量”的方式估计位姿。该方法将两个视角下的匹配点转化为视差向量,并通过求解一组线性方程组来估计相邻帧之间的相对位姿。同时,该方法还能有效地处理重复区域和遮挡等问题,具有较高的鲁棒性。 此外,在关键帧选择方面,ORB-SLAM2采用了一种基于路标点的策略,即当当前帧与地图中的路标点距离较远时,就将当前帧作为新的关键帧。这种策略可以确保全局地图的均匀性和关键帧的稠密性。 最后,ORB-SLAM2采用了基于基础矩阵的闭环检测方法,该方法可以在时间和空间复杂度上达到较好的平衡。同时,ORB-SLAM2还采用了一种优化地图点云的方式,通过通过图优化的方式优化地图中的点云位置,确保了地图的准确性和一致性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江南才尽,年少无知!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值