前言
Sharding-JDBC 是 Apache ShardingSphere 的核心组件之一,它是一种基于 JDBC 的分库分表中间件。通过在 JDBC 层面拦截 SQL 请求,实现数据的水平拆分、读写分离等功能。本文将详细介绍 Sharding-JDBC 的实现原理,并结合代码和 UML 流程图进行说明。
一、Sharding-JDBC 的核心概念
-
逻辑表与实际表
- 逻辑表:用户定义的虚拟表名称。
- 实际表:数据库中真实存在的物理表。
-
分片键(Sharding Key)
分片键是用于决定数据如何分布到不同分片的字段,例如user_id
。 -
分片算法
包括标准分片算法(精确匹配)、范围分片算法等。 -
SQL 解析与改写
Sharding-JDBC 会对原始 SQL 进行解析、改写,生成针对每个分片的最终 SQL。 -
结果归并
对多个分片返回的结果集进行合并处理。
二、Sharding-JDBC 的实现原理
1. 核心流程
Sharding-JDBC 的工作流程可以分为以下几个步骤:
- SQL 解析:解析 SQL,提取出表名、分片键等信息。
- 路由:根据分片规则计算出目标数据源和实际表。
- SQL 改写:将原始 SQL 改写为针对每个分片的实际 SQL。
- 执行:将改写后的 SQL 发送到对应的数据源执行。
- 结果归并:对多个分片返回的结果集进行合并处理。
2. UML 流程图
以下是 Sharding-JDBC 的核心流程 UML 图:
三、代码示例
以下是一个简单的 Sharding-JDBC 配置和使用示例。
1. Maven 依赖
首先在 pom.xml
中添加 Sharding-JDBC 的依赖:
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>sharding-jdbc-spring-boot-starter</artifactId>
<version>5.1.0</version>
</dependency>
2. 数据库配置
假设我们有两个数据源 ds0
和 ds1
,并且需要对 t_order
表进行分片。
spring:
shardingsphere:
datasource:
names: ds0,ds1
ds0:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/ds0
username: root
password: root
ds1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
jdbc-url: jdbc:mysql://localhost:3306/ds1
username: root
password: root
rules:
sharding:
tables:
t_order:
actual-data-nodes: ds$->{0..1}.t_order_$->{0..1}
table-strategy:
standard:
sharding-column: order_id
sharding-algorithm-name: t-order-inline
sharding-algorithms:
t-order-inline:
type: INLINE
props:
algorithm-expression: t_order_$->{order_id % 2}
3. Java 代码示例
编写一个简单的服务类来插入和查询订单数据。
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.stereotype.Service;
@Service
public class OrderService {
@Autowired
private JdbcTemplate jdbcTemplate;
public void insertOrder(Long orderId, String userId) {
String sql = "INSERT INTO t_order (order_id, user_id) VALUES (?, ?)";
jdbcTemplate.update(sql, orderId, userId);
}
public void queryOrders() {
String sql = "SELECT * FROM t_order WHERE user_id = ?";
jdbcTemplate.query(sql, new Object[]{"user1"}, (rs, rowNum) -> {
System.out.println("Order ID: " + rs.getLong("order_id"));
return null;
});
}
}
4. 测试代码
在测试类中调用上述服务方法:
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
@SpringBootTest
public class OrderServiceTest {
@Autowired
private OrderService orderService;
@Test
public void testInsertAndQuery() {
// 插入两条订单数据
orderService.insertOrder(1L, "user1");
orderService.insertOrder(2L, "user2");
// 查询订单数据
orderService.queryOrders();
}
}
四、总结
Sharding-JDBC 通过在 JDBC 层面拦截 SQL 请求,实现了透明化的分库分表功能。其核心原理包括 SQL 解析、路由计算、SQL 改写、执行和结果归并。通过配置分片规则和算法,开发者可以轻松实现高性能的分布式数据库操作。
在实际项目中,可以根据业务需求选择合适的分片策略和算法,同时需要注意性能优化和数据一致性问题。
希望本文对你理解 Sharding-JDBC 的实现原理有所帮助!