SAR ADC LSB Repeat 技术

SAR ADC的非理想因素来源有多种,也有很多校正技术。校正技术有:1)DEM&Dither ,这个可以参考《Noise sharping SAR ADC with DAC DEM》,dither是输入加入一个噪声扰动,后续给处理掉的方法。2)Redundant ,这个可以参考《SAR ADC 冗余介绍》和《SAR ADC冗余算法》这两篇文章,里面有详细介绍。3)LSB repeat,可以简单理解为结束完最低位比较后,添加冗余位再进行比较,以平均化噪声。

SAR ADC的噪声来源很多。采样时有采样噪声KT/C.转换阶段有比较器的噪声,Vref的噪声,开关的噪声等,这些噪声如果比较大,会影响比较器的判决结果。如果我们想降低比较器的噪声,需要牺牲很大的面积和功耗。所以我们采用LSB repeat技术,来减小噪声对SAR ADC 性能的影响。
在这里插入图片描述

最低位repeat 多次,如果当高位因为噪声有一个比较错误,这样低位的Repeat可以纠正这个错误。如果高位没有判决错误,等最低位判决结束后,就剩下残余电压,这些残余电压里夹杂着噪声,这些噪声呈现高斯分布,则这些噪声的平均值为0,那经过多次比较后,相当于输出的码值平均值趋于0,那么就可以提升起到降噪声提升ADC性能的效果。
在这里插入图片描述

这里要注意实际的噪声是没有降低的。同样的噪声水平下,根据上图的仿真结果可以选择不同的repeat 权重和repeat次数。可以看到采用1bit 权重,repeat需要5次左右。而采用0.5bit权重,只要3次就可以达到同样的效果。所以repeat次数和repeat 权重可以根据需要灵活设置。

LSB repeat 技术通过在 SAR ADC 转换流程的末尾(LSB 及邻近低位)‌引入多次比较冗余‌,并采用‌平均或表决机制‌处理多次比较结果,有效‌抑制了噪声和随机误差对最低位转换的影响‌,从而‌提升了转换精度和可靠性‌,尤其是在面临噪声敏感或需要高精度校准的应用场景中,但其代价是‌增加了转换时间和控制逻辑复杂度。

资源下载链接为: https://pan.quark.cn/s/f989b9092fc5 在 Android 应用开发中,开发一款仿 OPPO 手机计算器的应用是极具实践价值的任务,它融合了 UI 设计、事件处理以及数学逻辑等多方面的技术要点。当前的“最新版仿 OPPO 手机计算器--android.rar”压缩包中,提供了该计算器应用的源代码,这为开发者深入学习 Android 编程提供了宝贵的资源。 UI 设计是构建此类计算器应用的基石。OPPO 手机的计算器界面以清晰的布局和良好的用户交互体验著称,其中包括数字键、运算符键以及用于显示结果的区域等关键元素。开发者需借助 Android Studio 中的 XML 布局文件来定义这些界面元素,可选用 LinearLayout、GridLayout 或 ConstraintLayout 等布局管理器,并搭配 Button 控件来实现各个按键功能。同时,还需考虑不同分辨率屏幕和设备尺寸的适配问题,这通常涉及 Density Independent Pixel(dp)单位的应用以及 Android 尺寸资源的合理配置。 事件处理构成了计算器的核心功能。开发者要在每个按钮的点击事件中编写相应的处理代码,通常通过实现 OnClickListener 接口来完成。例如,当用户点击数字键时,相应的值会被添加到显示区域;点击运算符键时,则会保存当前操作数并设定运算类型。而对于等号(=)按钮,需要执行计算操作,这往往需要借助栈数据结构来存储操作数和运算符,并运用算法解析表达式以完成计算。 数学逻辑的实现则是计算器功能的关键体现。在 Android 应用中,开发者可以利用 Java 内置的 Math 类,或者自行设计算法来完成计算任务。基本的加减乘除运算可通过简单的算术操作实现,而像求幂、开方等复杂运算则需调用 Math 类的相关方法。此外
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芯辰则吉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值