计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet

在这里插入图片描述
在这里插入图片描述

计算机视觉卷积神经网络(CNN)基础:从LeNet到ResNet,在计算机视觉领域,卷积神经网络(Convolutional Neural Network,CNN)已然成为推动众多任务发展的核心力量。从早期简单的图像识别,到如今复杂的目标检测、语义分割、图像生成等任务,CNN 都展现出了卓越的性能。CNN 的发展历程见证了一系列经典模型的诞生,其中 LeNet 作为开山之作,为 CNN 的发展奠定了基础,而 ResNet 则通过创新性的设计,突破了传统神经网络的限制,使得网络能够构建得更深、性能更优。本文将深入探讨从 LeNet 到 ResNet 的发展脉络,详细解析其网络结构、工作原理,并通过丰富的代码示例,帮助读者全面理解和掌握这两种重要的卷积神经网络模型,为进一步深入研究计算机视觉领域的相关技术筑牢根基。

在这里插入图片描述

### ResNet18 深度学习模型架构与实现 ResNet18 是一种基于残差网络(ResNet)的深度学习模型,它通过引入跳跃连接解决了深度神经网络训练中的梯度消失问题。这种设计使得训练非常深的网络成为可能,并显著提升了模型性能[^2]。 #### 1. ResNet18 的整体架构 ResNet18 的架构由一系列卷积层、批归一化层(Batch Normalization)、ReLU 激活函数以及全连接层组成。它的主要特点是使用了残差块(Residual Block),每个残差块包含两个 3x3 卷积层和一个跨层的恒等映射(Identity Mapping)。当输入和输出维度不匹配时,会通过线性投影进行调整以匹配维度[^2]。 以下是 ResNet18 的主要组成部分: - **输入层**:接收大小为 224x224 的图像。 - **卷积层**:第一层卷积核大小为 7x7,步长为 2,通道数为 64。 - **最大池化层**:步长为 2,池化窗口大小为 3x3。 - **残差块**:共包含 4 个阶段,每个阶段包含多个残差块,具体如下: - 第一阶段:2 个残差块,通道数为 64。 - 第二阶段:2 个残差块,通道数为 128。 - 第三阶段:2 个残差块,通道数为 256。 - 第四阶段:2 个残差块,通道数为 512。 - **全局平均池化层**:将特征图降维为固定大小。 - **全连接层**:用于分类任务,输出类别数根据具体任务而定。 #### 2. ResNet18 的实现代码 以下是一个基于 PyTorch 的 ResNet18 实现示例: ```python import torch import torch.nn as nn import torchvision.models as models # 加载预训练的 ResNet18 模型 model = models.resnet18(pretrained=True) # 将模型指定到 GPU 上运行(如果可用) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) # 示例:定义输入数据并将其移动到 GPU input_tensor = torch.randn(1, 3, 224, 224).to(device) # 假设输入为单张 RGB 图像 output = model(input_tensor) print(output) ``` 上述代码展示了如何加载预训练的 ResNet18 模型,并将其指定到 GPU 上运行[^4]。 #### 3. 预训练模型下载 ResNet18 的预训练模型可以从官方或第三方资源中获取。例如,在 PyTorch 中可以直接通过 `torchvision.models` 加载预训练权重。此外,也可以从其他开源项目中下载特定变体的预训练模型。例如,ResNet50 IBN-A 的预训练模型可以参考以下链接进行下载[^3]: ```plaintext https://github.com/XingangPan/IBN-Net/releases/download/v1.0/resnet50_ibn_a-d9d0bb7b.pth ``` 需要注意的是,不同版本的 ResNet 可能具有不同的预训练权重,因此在选择时应确保其与目标任务相匹配。 ###
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xcLeigh

万水千山总是情,打赏两块行不行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值