【李宏毅2022 机器学习春】汇总

李宏毅2022 机器学习春 课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php

官方code:https://github.com/virginiakm1988/ML2022-Spring

作业参考:https://github.com/Joshuaoneheart/ML2022_all_A_plus

作业参考2–机器学习手艺人–这个不错:https://blog.csdn.net/weixin_42369818?type=blog


【李宏毅2021机器学习深度学习】作业讲解 & 笔记收藏 & 课程主页:https://blog.csdn.net/weixin_43154149/article/details/121800840

21年 大佬代码参考:https://github.com/pai4451/ML2021


我的作业:

实验记录关键点
【李宏毅2022 机器学习春】hw1_Regression(strong baseline)数据特征选取
【李宏毅2022 机器学习春】hw2_Classification(strong baseline)余弦退火学习率
【李宏毅2022 机器学习春】hw3_CNN(Boss baseline)Data Augmentation + Test Time Augmentation + ensemble
【李宏毅2022 机器学习春】hw4_Self-Attention(接近 strong baseline,等待改进中)conformer + AM-Softmax + Self_Attention_Pooling
【李宏毅2022 机器学习春】hw5_Transformer(跳过)Tokenize + Label smoothing + Leaning rate scheduling + Transformer
【李宏毅2022 机器学习春】hw6_GAN(不懂…)DCGAN + WGAN + StyleGAN2
【李宏毅2022 机器学习春】hw7_BERT(占坑)Apply linear learning rate decay + Change value of “doc_stride” + Improve preprocessing + Try other pretrained models + Improve postprocessing + (fp16 + 梯度累计,训练技巧)
【李宏毅2022 机器学习春】hw8_ Autoencoder(占坑)
【李宏毅2022 机器学习春】hw9_Explainable AI(搬运)
### 李宏毅2022机器学习课程作业资源汇总 #### Kaggle竞赛链接 对于希望参与具体实践并完成李宏毅教授布置的家庭作业的学生来说,可以访问对应的Kaggle页面来获取最新的数据集以及提交预测结果: - **第七次家庭作业**:可通过[Kaggle](https://www.kaggle.com/competitions/ml2022spring-hw7)[^1] 获取更多信息。 - **第十一次家庭作业**:详情见于[Kaggle](http://www.kaggle.com/competitions/ml2022-spring-hw11)[^2]。 #### 数据准备与代码下载 为了顺利完成第一次家庭作业以及其他相关任务,建议按照如下方式进行前期准备工作: - 访问课程官方GitHub仓库下载源码; - 或者通过Kaggle平台下载所需的数据集; - 另外还可以订阅名为“机器学习手艺人”的微信公共账号,在文章结尾处查找下载指南[^3]。 #### 提交方式说明 当准备好要上传的结果文件时,请注意部分情况下可能需要借助特定工具或服务绕过网络限制才能成功向Kaggle服务器发送最终版本。 #### 改进模型性能的方法探讨 针对第四次家庭作业中的挑战题目,提供了两种不同的策略用于提升分类器的表现效果: - 使用简单线性模型作为起点,能够达到超过60.82% 的准确率; - 对Transformer模块内部结构做出适当调整,则有望进一步提高至70.37%以上[^4]。 ```python # 示例代码片段展示如何加载CSV文件 import pandas as pd train_data = pd.read_csv('covid.train.csv') test_data = pd.read_csv('covid.test.csv') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值