HDU - 6514 (Monitor)

本文详细解析了二维差分算法及其在解决摄像头监视区域覆盖问题中的应用,通过两次前缀和操作实现对矩阵中每个点的监视状态统计,最终判断特定区域是否完全被监视。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:有一个 n*m 的矩阵田地,现在安装 p 个摄像头,每个摄像头都会监视一个矩形的区域,然后现在有若干伙作案团伙回来偷菜,他们偷菜的区域也是一块矩形区域,现在问你,p 个摄像头能不能完全把这块被偷的区域监视到;

 

分析:二维差分;

 

代码:

#include<cstdio>
#include<iostream>
using namespace std;
inline void read(int &x){
	x=0;char c=getchar();
	while(!isdigit(c)){c=getchar();}
	while(isdigit(c)){x=(x<<3)+(x<<1)+(c-48);c=getchar();}
}
const int N = 2E7+10;

int s[N];  //因为 n*m<=1E7,可以开vector二维,这里选择开一维模拟
int n,m,p,q;

int id(int x,int y){return m*x+y;}

void add(int x,int y,int op){s[id(x,y)]+=op;}

int sum(int x1,int y1,int x2,int y2){
	return s[id(x2,y2)]-s[id(x2,y1-1)]-s[id(x1-1,y2)]+s[id(x1-1,y1-1)];
    //二维前缀和查询
}
int main()
{
    while(~scanf("%d%d",&n,&m)){
    	for(int i=0;i<=(n+1)*(m+1);i++) s[i]=0;
    	read(p);
    	while(p--){
	 	    int x1,y1,x2,y2;
			read(x1),read(y1),read(x2),read(y2);
            
            //这四句是二维差分基本语句,就不解释了
			add(x1,y1,1);
			add(x1,y2+1,-1);
			add(x2+1,y1,-1);
			add(x2+1,y2+1,1);
	    }
	    for(int i=1;i<=n;i++){
	    	for(int j=1;j<=m;j++){
	    		s[id(i,j)]+=s[id(i-1,j)]+s[id(i,j-1)]-s[id(i-1,j-1)];
                //第一遍前缀和是根据差分的性质求出每个点被几个摄像头监视到;
			}
		}
		for(int i=1;i<=n;i++){
			for(int j=1;j<=m;j++){
				if(s[id(i,j)]>1) s[id(i,j)]=1;
                //只要被监视到,置 1 ;
			}
		}
		for(int i=1;i<=n;i++){
	    	for(int j=1;j<=m;j++){
	    		s[id(i,j)]+=s[id(i-1,j)]+s[id(i,j-1)]-s[id(i-1,j-1)];
                //第二遍前缀和是这个点以及之前所有的点被监视的单位的数量,也是上一步置1的原因;
			}
		}
		read(q);
		while(q--){
			int x1,y1,x2,y2;
			read(x1),read(y1),read(x2),read(y2);
			if(sum(x1,y1,x2,y2)==(y2-y1+1)*(x2-x1+1)) puts("YES");
			else puts("NO");
		}
	}
}

 

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值