在本篇文章中,我们将深入探讨如何使用Psychic来加载文档,并将这些文档转换为可用于机器学习应用的嵌入向量。通过这一过程,您可以在自己的应用中实现智能问答和信息检索功能。
技术背景介绍
Psychic是一种强大的工具,允许开发者从多种SaaS应用中连接和加载文档数据。通过其API,我们可以轻松地集成不同的数据源,并将数据转换为有用的格式。
核心原理解析
Psychic通过使用PsychicLoader
类实现文档加载。每个连接包含一个connector_id
,对应于连接的SaaS应用,以及一个connection_id
,用于标识特定的连接实例。
代码实现演示
首先,我们需要确保安装必要的库。如果还没有安装psychicapi
和langchain-chroma
,请运行以下命令:
!poetry run pip -q install psychicapi langchain-chroma
然后,我们可以通过如下代码加载文档:
from langchain_community.document_loaders import PsychicLoader
from psychicapi import ConnectorId
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_chroma import Chroma
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
# 使用PsychicLoader加载Google Drive文档
google_drive_loader = PsychicLoader(
api_key="your-secret-key", # 使用您自己的API密钥
connector_id=ConnectorId.gdrive.value,
connection_id="your-connection-id", # 使用您的连接ID
)
# 加载文档
documents = google_drive_loader.load()
# 拆分文档为小块
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# 将文档转化为嵌入
embeddings = OpenAIEmbeddings()
# 使用Chroma存储嵌入向量
docsearch = Chroma.from_documents(texts, embeddings)
# 创建问答链
chain = RetrievalQAWithSourcesChain.from_chain_type(
OpenAI(temperature=0), chain_type="stuff", retriever=docsearch.as_retriever()
)
# 提问并获取答案
response = chain({"question": "What is Psychic?"}, return_only_outputs=True)
print(response)
在上面的代码中,我们加载了Google Drive中的文档,处理并转换为嵌入向量,然后使用RetrievalQAWithSourcesChain
进行问答。
应用场景分析
这种技术组合可以广泛应用于企业文档管理、智能搜索引擎、客户支持自动化等场景。通过将文档数据转化为嵌入向量,可以实现更快速、高效的信息检索和问答服务。
实践建议
- 确保在生产环境中使用安全的API密钥。
- 根据需要调整文档拆分的
chunk_size
,以优化处理性能。 - 在实际使用中,结合数据的特性选择匹配的
connector_id
。
如果遇到问题欢迎在评论区交流。
—END—