使用Psychic加载和处理文档的完整指南

在本篇文章中,我们将深入探讨如何使用Psychic来加载文档,并将这些文档转换为可用于机器学习应用的嵌入向量。通过这一过程,您可以在自己的应用中实现智能问答和信息检索功能。

技术背景介绍

Psychic是一种强大的工具,允许开发者从多种SaaS应用中连接和加载文档数据。通过其API,我们可以轻松地集成不同的数据源,并将数据转换为有用的格式。

核心原理解析

Psychic通过使用PsychicLoader类实现文档加载。每个连接包含一个connector_id,对应于连接的SaaS应用,以及一个connection_id,用于标识特定的连接实例。

代码实现演示

首先,我们需要确保安装必要的库。如果还没有安装psychicapilangchain-chroma,请运行以下命令:

!poetry run pip -q install psychicapi langchain-chroma

然后,我们可以通过如下代码加载文档:

from langchain_community.document_loaders import PsychicLoader
from psychicapi import ConnectorId
from langchain.chains import RetrievalQAWithSourcesChain
from langchain_chroma import Chroma
from langchain_openai import OpenAI, OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter

# 使用PsychicLoader加载Google Drive文档
google_drive_loader = PsychicLoader(
    api_key="your-secret-key",  # 使用您自己的API密钥
    connector_id=ConnectorId.gdrive.value,
    connection_id="your-connection-id",  # 使用您的连接ID
)

# 加载文档
documents = google_drive_loader.load()

# 拆分文档为小块
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

# 将文档转化为嵌入
embeddings = OpenAIEmbeddings()
# 使用Chroma存储嵌入向量
docsearch = Chroma.from_documents(texts, embeddings)
# 创建问答链
chain = RetrievalQAWithSourcesChain.from_chain_type(
    OpenAI(temperature=0), chain_type="stuff", retriever=docsearch.as_retriever()
)

# 提问并获取答案
response = chain({"question": "What is Psychic?"}, return_only_outputs=True)
print(response)

在上面的代码中,我们加载了Google Drive中的文档,处理并转换为嵌入向量,然后使用RetrievalQAWithSourcesChain进行问答。

应用场景分析

这种技术组合可以广泛应用于企业文档管理、智能搜索引擎、客户支持自动化等场景。通过将文档数据转化为嵌入向量,可以实现更快速、高效的信息检索和问答服务。

实践建议

  1. 确保在生产环境中使用安全的API密钥。
  2. 根据需要调整文档拆分的chunk_size,以优化处理性能。
  3. 在实际使用中,结合数据的特性选择匹配的connector_id

如果遇到问题欢迎在评论区交流。

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值