JMETER中,如何实现数据是动态的,且需按固定的格式加密传输报文

        在 JMeter 中测试加密且数据变动的报文,核心是先解决 “动态数据参数化”,再通过 “自定义加密逻辑” 处理报文,最后组装请求。具体步骤如下:

一、第一步:解决 “数据变动”—— 参数化动态数据

        先通过 JMeter 的参数化组件,生成 / 获取每次请求的动态数据(如时间戳、随机数、用户 ID 等),避免硬编码。常用参数化方式:

场景推荐组件 / 工具说明
固定格式的动态值函数助手(Functions Helper)${__time(yyyyMMddHHmmss,)}(时间戳)、${__Random(1000,9999,)}(随机数)
批量预设的动态值CSV Data Set Config(CSV 数据文件)从 CSV 文件中逐行读取动态数据(如不同用户账号、订单号)
自定义逻辑生成的值User Defined Variables(用户定义变量)手动定义全局动态变量,或结合脚本生成

二、第二步:解决 “报文加密”—— 添加加密逻辑

        JMeter 无内置加密组件,需通过预处理程序编写加密脚本,将 “参数化后的动态数据” 加密为密文,再传入请求报文。推荐两种方式:

方式 1:JSR223 预处理程序(推荐)

        性能优于 BeanShell,支持 Groovy/Java 脚本,可直接编写加密逻辑或调用外部加密 jar 包。
核心步骤

  1. 在 “HTTP 请求” 下添加 “JSR223 预处理程序”。
  2. 选择脚本语言(如Groovy)。
  3. 编写脚本:
    • 第一步:获取参数化的动态明文(如def plainText = vars.get("dynamicParam");dynamicParam是第一步定义的参数化变量)。
    • 第二步:调用加密算法(如 AES、RSA)处理明文,生成密文。
    • 第三步:将密文存入 JMeter 变量(如vars.put("encryptedText", cipherText);),供请求报文引用。

示例(AES 加密片段)

groovy

import javax.crypto.Cipher;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.binary.Base64;

// 1. 获取动态明文(第一步参数化的变量)
def plainText = vars.get("dynamicParam");
// 2. 加密配置(需与开发确认:密钥、算法、模式、填充方式)
String key = "1234567890abcdef"; // 实际密钥需从配置文件或变量读取
SecretKeySpec secretKey = new SecretKeySpec(key.getBytes(), "AES");
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
// 3. 执行加密并转Base64(避免乱码)
byte[] encryptedBytes = cipher.doFinal(plainText.getBytes("UTF-8"));
def encryptedText = Base64.encodeBase64String(encryptedBytes);
// 4. 存入变量,供请求使用
vars.put("encryptedText", encryptedText);

方式 2:BeanShell 预处理程序(兼容旧版本)

        逻辑与 JSR223 一致,但性能较差,适合简单加密场景。脚本语法与 Java 类似,需注意:

  • 引用外部 jar 包时,需将 jar 放入 JMeter 的lib/ext目录,并重启 JMeter。
  • 变量操作同样使用vars.get("变量名")(获取)和vars.put("变量名", 值)(存储)。

三、第三步:组装加密请求报文

        在 “HTTP 请求” 的 “请求体”(如 JSON)中,通过${变量名}引用第二步生成的加密变量,替换原明文位置。

示例(JSON 请求体):json

{
  "requestId": "${__time(yyyyMMddHHmmss,)}", // 动态参数(第一步)
  "encryptedData": "${encryptedText}",       // 加密后的密文(第二步)
  "timestamp": "${__time(,)}"
}

四、关键验证:解密响应(可选)

        若需验证响应是否正确,可在 “HTTP 请求” 后添加JSR223 后置处理程序,编写解密脚本,将加密响应解密后与预期结果对比(如通过 “响应断言” 验证)。

五、注意事项

  1. 加密算法一致性:必须与开发确认加密细节(算法类型、密钥、IV 向量、编码方式(UTF-8/GBK)、填充模式),否则加密结果无效。

  2. 性能优化:若并发量高,优先使用JSR223 + Groovy(Groovy 是 JMeter 推荐的高性能脚本语言),避免 BeanShell。

  3. 密钥安全:不要将密钥硬编码到脚本中,可通过 “User Defined Variables” 或外部配置文件(如user.properties)读取,敏感场景可结合 JMeter 的 “加密变量” 插件。

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小桥流水人家哇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值