转:PM产品设计九步法

本文分享了产品设计的九步法,强调理解核心需求、产品独特性及用户角色的重要性。通过深入理解用户,关注关键点的转化率,形成产品闭环,并迅速迭代,以实现产品的自我成长和用户体验的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(转载)

“很多PM都有一个梦想,用自己设计的产品改变世界,同时挣个盆满钵满,可十年没变的入门级薪水,却让人触摸到现实是骨感的。

1产品满足用户的哪一个核心需求?
产品设计的关键在于搞清楚产品的核心价值是哪一个,满足用户什么核心需求。

实践中,70%的PM经常忘记了这一点,因为“满足用户需求”几乎成了每一个PM都能张口就来的口诀,所以就常常忘记了。

我们经常听到的“微博要加强SNS属性”、“微信要打通O2O”、“社区信息要流动得更快”,就是最典型的忘记了用户需求的例子。

所有这些提法都是想当然,没有站在用户角度的思考,没有搞清楚用户需求,就一定会注定失败。

实际上,即使PM使用了这一条,也常常于事无补。

因为仔细分析“满足用户需求”,会发现其实是无字天书。

第一,“用户”是一个虚拟群体概念,PM找不到一个具体的人代表用户。

第二,“用户”实际上根本不知道自己需要什么。

所以实践中用户总是被三种人代表:PM自己,假想的典型用户,PM的行政领导。而今天iphone,微博,微信不离手的人几年前又哪知道自己需要这个。

用户需求永远是被天才捕捉到和创造出来的。

网游“巨人”曾经很用心的去实践“满足用户需求”这个真理,非常认真的调研用户,用户要什么给什么,结果到最后发现“用户”根本不存在,那些标签为“用户”的人,其实内心不知道自己需要什么,于是产品彻底失败了。

很幸运抑或是很不幸,我们大部分人,不需要像乔帮主那样天降大任去发明一个iphone,也没机会初出茅庐就和金正

内容概要:本文档详细介绍了一个基于MATLAB实现的多时间窗网络(MTW)结合Transformer编码器进行多变量时间序列预测的项目。项目旨在提升多变量时间序列预测的精度,通过多时间窗特征提取模块捕捉不同时间尺度的特征,结合Transformer编码器实现长距离依赖建模。项目涵盖了从数据预处理、多时间窗特征提取、Transformer编码器构建、模型训练到预测评估的完整流程,并提供了详细的代码实现和GUI设计。此外,文档还讨论了模型在工业设备故障预测、金融市场趋势分析、智能交通流量预测等多个领域的应用。 适用人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师及数据科学家。 使用场景及目标:①掌握多时间窗网络(MTW)和Transformer编码器的工作原理及其在多变量时间序列预测中的应用;②通过MATLAB实现多变量时间序列预测模型,理解各个模块的功能和实现细节;③利用提供的代码和GUI设计,快速构建和测试多变量时间序列预测模型;④应用于工业设备故障预测、金融市场分析、智能交通管理等领域,提升预测精度和决策支持能力。 其他说明:项目采用模块化设计,代码结构清晰,便于扩展和维护。文档不仅提供了详细的代码实现和注释,还介绍了模型训练策略、正则化机制、超参数配置等优化手段,确保模型的高效训练和良好泛化能力。此外,文档还探讨了未来改
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据大观察

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值