- 博客(14)
- 收藏
- 关注
原创 Python环境问题全面指南
本文全面探讨了Python环境管理中的常见问题,包括环境冲突、版本兼容性、依赖库冲突以及系统路径与包管理问题。文章详细分析了这些问题的表现和成因,并提供了系统的解决方案,特别推荐使用Conda作为环境管理工具。Conda不仅能够有效隔离不同项目的依赖,还能解决多版本Python共存和依赖冲突等问题。文章还详细介绍了Conda的安装、配置和使用方法,帮助读者建立科学、高效的Python环境管理体系。通过合理使用虚拟环境和包管理工具,开发者可以避免环境污染、依赖冲突等问题,确保项目的稳定性和可复现性。
2025-05-21 10:53:53
1119
原创 常见的 Python 环境配置问题及解决方案
在配置 Python 环境时,初学者常遇到版本兼容性、第三方库特性差异及 Windows 特定问题。建议使用 Python 3.x 并检查库兼容性,通过虚拟环境隔离项目依赖。Windows 用户需安装 Microsoft Visual C++ Redistributable 并配置 PATH 环境变量。使用国内镜像源可加速 pip 安装。虚拟环境是管理项目依赖的最佳实践,建议为每个项目创建独立环境,并通过 requirements.txt 记录依赖。
2025-05-18 10:15:27
1824
原创 知识图谱 + 大语言模型:打造更聪明、更可靠的AI大脑 —— 探索 GraphRAG 中文优化与可视化实践
本文探讨了知识图谱(KG)如何增强大语言模型(LLM),以克服其在事实准确性、推理能力和知识更新方面的局限。通过融合 KG 的结构化知识,特别是利用检索增强生成(RAG)技术,可以显著提升 LLM 的表现。文中重点介绍了基于微软 GraphRAG 的个人开源项目 graphrag-Chinese-llm,该项目针对中文环境进行了优化,适配了主流中文 LLM,并简化了使用流程。目前项目已开源中文优化部分,并正在开发可视化界面以进一步降低使用门槛。诚邀关注 GitHub 项目,共同探索 KG+LLM 的潜力。
2025-05-05 16:16:32
1475
原创 小红书爬虫实战:解锁强大开源工具(python sdk)
小红书作为一个热门社交电商平台,其数据对分析趋势和内容创作极具价值。本文介绍了一款强大的开源爬虫工具(GitHub: ReaJason/xhs),它能轻松获取小红书笔记内容,包括点赞量、收藏量、正文等,还支持关键词搜索、用户笔记抓取,甚至自动点赞评论等功能。使用方法简单:安装最新版Python SDK,下载stealth.min.js,配置Playwright驱动,再结合示例代码即可运行。项目灵活易用,适合数据分析、竞品研究等场景。但需注意获取有效cookie、控制请求频率以避免封禁,并妥善存储数据。博客详
2025-04-07 09:47:40
1819
原创 2025年最新更新,GraphRAG yaml配置参数详细说明
默认配置模式(使用 YAML/JSON)默认配置模式可以通过在数据项目根目录中使用或文件进行配置。如果同时存在一个.env文件,则它将被加载,其中定义的环境变量将可用于配置文档中的标记替换,使用${ENV_VAR}语法。我们在中默认初始化为 YML,但如果您愿意,也可以使用等效的 JSON 格式。许多这些配置值都有默认值。为了避免在此重复说明,请直接参考代码中的。
2025-03-30 20:24:26
1368
原创 最近都在讲的个人知识库,其背后的技术原理是什么?
向量化就是把文字变成一串数字(向量),这串数字能反映文字的语义。意思相近的文本,向量也“长得像”。比如,“猫喜欢吃鱼”和“狗喜欢吃骨头”转成向量后,它们在某些维度上会很接近,因为都跟“宠物饮食”有关。RAG(Retrieval-Augmented Generation,检索增强生成)是个人知识库的核心技术。它让AI在回答问题时,不只靠自己脑子里的“老知识”,还能从你的知识库里实时找资料,生成更准确、更贴合你需求的回答。文档分块:把大文件切成小块,方便处理。向量化存储:把文本变成向量,实现语义搜索。
2025-03-23 19:38:59
882
原创 DeepSeek+pandas-ai:超强组合,处理表格数据只需一句话
pandas-ai是一个基于生成式AI的Python库,它通过自然语言理解技术将你的指令转化为Pandas代码。基础操作:“找出销售额最高的5个国家”复杂计算:“计算幸福指数最低的两个国家的GDP总和”可视化:“用不同颜色绘制各国GDP的柱状图”
2025-03-15 16:05:52
1152
1
原创 AI也需Plan B:让DeepSeek在回答中自检错误的4种方法
“智能工具用不好,反而会被工具误导。”这4个方法的核心不是技术,而是批判性思维的外挂。记住:真正聪明的提问者,永远会给AI装上「安全带」。
2025-03-10 09:38:01
1456
原创 超强Smolagents:Deepseek 接口与联网搜索的强大组合
Smolagents 是一个功能强大的 AI 工具库,其模块化设计和易用性使其在自动化任务中表现出色。通过集成 Deepseek 接口和联网搜索工具(如 `VisitWebpageTool`),Smolagents 能够实现从网页内容提取到智能分析的完整流程。以“用五个关键词概况新闻”为例,代理利用 Deepseek 的先进语言处理能力,精准理解文本并提炼关键信息,同时通过联网工具访问实时网络数据,生成简洁准确的总结。Deepseek
2025-03-05 16:08:40
1013
原创 DeepSeek提示词轮转:30个领域教你一步步解决问题
欢迎体验“提示词轮转”的魔法!这篇博客为您呈现了一种简单又强大的方法——通过逐步拆解任务,让复杂问题变得轻松可控。我们精心整理了30个领域的实用指南,从学术写作、技术教程到旅行规划、宠物护理,覆盖生活与工作的方方面面。每个领域都配有详细步骤和具体提示词示例,即使您是新手,也能一看就懂、一用就会。无论您想写论文、设计菜谱,还是提升效率,这里都有现成的“轮转套路”帮您事半功倍。博客不仅教您如何思考和行动,还提供直接可用的提示词,让您与AI工具无缝合作,快速产出成果。探索这30个场景,解锁属于您的成功秘籍吧!无论
2025-03-03 10:10:57
1533
原创 结构化数据的超强功能:对比OpenAI与DeepSeek的结构化输出
随着大语言模型的普及,结构化输出成为提升响应可控性和实用性的关键技术。本文对比了 OpenAI 和 DeepSeek 的结构化输出功能,展示了其在开发者中的应用潜力。OpenAI 的 Chat Completions API 通过 response_format 和 strict: true,强制生成符合 JSON 架构的响应,适合需要高精度场景;DeepSeek 的 API 则通过 response_format={"type": "json_object"} 和提示工程,灵活输出 JSON 数据,适合快
2025-02-27 13:40:36
1686
原创 大模型接口 Function Calling:提升提示词中计算问题的准确性
大模型接口 Function Calling:提升提示词中计算问题的准确性
2025-02-26 16:48:39
1416
原创 DeepSeek 使用技巧:问题(提示词)轮转提高回答质量!
什么是提示词轮转?简单来说,就是将问题分步提问,每下一步提问时附带上一步的结果,即使它已经具备记忆和上下文功能。这种方法在写较长的文章时效果特别明显。
2025-02-24 10:26:54
1065
DeepSeek提示词大全
2025-02-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人