【机器学习笔记】《统计学习方法》第二章 感知机+随机梯度下降法

主要参考书目《统计学习方法》第2版,清华大学出版社
参考书目 Machine Learning in Action, Peter Harrington
用于考研复试笔记,所以写的很简洁,自己能看懂就行。有学习需求请绕道,参考吴恩达机器学习或以上书籍,讲得比大多数博客好。

概念

感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1,-1二值。

f ( x ) = s i g n ( w ⋅ x + b ) f(x)=sign(w·x+b) f(x)=sign(wx+b)
其中, s i g n ( x ) = { + 1 , x ≥ 0 − 1 , x < 0 sign(x)= \left\{ \begin{aligned} +1, && x \ge 0\\ -1, && x < 0 \end{aligned} \right. sign(x)={ +1,1,x0x<0

对于一个特征空间 R n R^n Rn中的一个超平面 S S S,其中 w w w是超平面的法向量, b b b是超平面的截距
S S S称为分离超平面(separating hyperplane)

线性可分数据集(linearly separable data set)
被划分在超平面的两侧。

原理

感知机的学习策略

首先写出输入空间 R n R^n Rn中任一点 x 0 x_0 x0到超平面 S S S的距离
1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||}|w·x_0+b| w1wx0+b

书上扯淡说了个二范数,就是距离公式而已,拓展到n维空间

不考虑 ∣ ∣ w ∣ ∣ ||w|| w感知机学习的损失函数
L ( x , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) L(x,b)=-\sum\limits_{x_i \in M}y_i(w·x_i+b) L(x,b)=xiMyi(wxi+b)
其中 M M M为误分类点的集合

为什么这里有一个-号?,因为认为 w ∗ x i + b > 0 , y i = − 1 w*x_i+b>0,y_i=-1 wxi+b>0yi=

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值