代码随想录算法训练营第五十一天|647. 回文子串,516. 最长回文子序列

LeetCode回文问题的动态规划解法

647. 回文子串,516. 最长回文子序列

647. 回文子串

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。

回文字符串 是正着读和倒过来读一样的字符串。

子字符串 是字符串中的由连续字符组成的一个序列。

示例 1
输入:s = “abc”
输出:3
解释:三个回文子串: “a”, “b”, “c”

示例 2
输入:s = “aaa”
输出:6
解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”

这道题暴力解法会超时通不过,根据以往题目经验,定义dp[i] 为 下标i结尾的字符串有dp[i]个回文串找不到递归关系。
在判断字符串S是否是回文,如果s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时递归关系,判断一个子字符串(字符串下标范围[i,j])是否回文,依赖于子字符串(下标范围[i + 1, j - 1])) 是否是回文。定义二维dp数组。布尔类型的dp[i][j],表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

确定递推公式

  • 当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

  • 当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

    • 情况一:下标i 与 j相同,同一个字符例如a,是回文子串
    • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
    • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

上面情况3中,dp[i + 1][j - 1] 在 dp[i][j]的左下角,所以遍历方向是从下到上,从左到右遍历

class Solution:
    def countSubstrings(self, s: str) -> int:
        dp = [[False] * len(s) for _ in range(len(s))]
        result = 0
        for i in range(len(s)-1, -1, -1): #注意遍历顺序
            for j in range(i, len(s)):
                if s[i] == s[j]:
                    if j - i <= 1: #情况一 和 情况二
                        result += 1
                        dp[i][j] = True
                    elif dp[i+1][j-1]: #情况三
                        result += 1
                        dp[i][j] = True
        return result

还有一个双指针法,确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。在遍历中心点的时候,要注意中心点有两种情况:一个元素作为中心点,两个元素作为中心点。

class Solution:
    def countSubstrings(self, s: str) -> int:
        result = 0
        for i in range(len(s)):
            result += self.extend(s, i, i, len(s)) #以i为中心
            result += self.extend(s, i, i+1, len(s)) #以i和i+1为中心
        return result
    
    def extend(self, s, i, j, n):
        res = 0
        while i >= 0 and j < n and s[i] == s[j]:
            i -= 1
            j += 1
            res += 1
        return res

516. 最长回文子序列

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。

示例 1
输入:s = “bbbab”
输出:4
解释:一个可能的最长回文子序列为 “bbbb” 。

示例 2
输入:s = “cbbd”
输出:2
解释:一个可能的最长回文子序列为 “bb” 。

class Solution:
    def longestPalindromeSubseq(self, s: str) -> int:
        dp = [[0] * len(s) for _ in range(len(s))]
        for i in range(len(s)):
            dp[i][i] = 1
        for i in range(len(s)-1, -1, -1):
            for j in range(i+1, len(s)):
                if s[i] == s[j]:
                    dp[i][j] = dp[i+1][j-1] + 2
                else:
                    dp[i][j] = max(dp[i+1][j], dp[i][j-1])
        return dp[0][-1]

和上题类似,区别在于子序列可不连续,在判断回文子串的题目中,如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2,如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,分别加入取最大值,dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值