Redis 保证数据一致性方案解析

谈谈一致性

一致性就是数据保持一致,在分布式系统中,可以理解为多个节点中数据的值是一致的。

  • 强一致性:这种一致性级别是最符合用户直觉的,它要求系统写入什么,读出来的也会是什么,用户体验好,但实现起来往往对系统的性能影响大
  • 弱一致性:这种一致性级别约束了系统在写入成功后,不承诺立即可以读到写入的值,也不承诺多久之后数据能够达到一致,但会尽可能地保证到某个时间级别(比如秒级别)后,数据能够达到一致状态
  • 最终一致性:最终一致性是弱一致性的一个特例,系统会保证在一定时间内,能够达到一个数据一致的状态。这里之所以将最终一致性单独提出来,是因为它是弱一致性中非常推崇的一种一致性模型,也是业界在大型分布式系统的数据一致性上比较推崇的模型

解决一直性主要有以下几种方案:

一、先更新数据库,再更新缓存

这套方案,大家是普遍反对的。为什么呢?有如下两点原因。

1.1(线程安全角度)

同时有请求A和请求B进行更新操作,那么会出现

  1. 线程 A 更新了数据库
  2. 线程 B 更新了数据库
  3. 线程 B 更新了缓存
  4. 线程 A 更新了缓存

这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。缓存和数据库的数据不一致了。缓存保存的是老数据,数据库保存的是新数据。这就导致了脏数据,因此不考虑。

1.2(业务场景角度)
  1. 如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
  2. 如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

二、先删除缓存,再更新数据库

该方案会导致不一致的原因是。同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:

(1)请求 A 进行写操作,删除缓存
(2)请求 B 查询发现缓存不存在
(3)请求 B 去数据库查询得到旧值
(4)请求 B 将旧值写入缓存
(5)请求 A 将新值写入数据库

上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

那么,如何解决呢?

2.1 采用延时双删策略

(1)先淘汰缓存
(2)再写数据库(这两步和原来一样)
(3)休眠1秒,再次淘汰缓存
这么做,可以将1秒内所造成的缓存脏数据,再次删除。

2.2 那么,这个1秒怎么确定的,具体该休眠多久呢?

针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百 ms 即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。

2.3 如果你用了mysql的读写分离架构怎么办?

ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求 A 进行更新操作,另一个请求 B 进行查询操作。

  1. 请求 A 进行写操作,删除缓存
  2. 请求 A 将数据写入数据库了,
  3. 请求 B 查询缓存发现,缓存没有值
  4. 请求 B 去从库查询,这时,还没有完成主从同步,因此查询到的是旧值
  5. 请求 B 将旧值写入缓存
  6. 数据库完成主从同步,从库变为新值

上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百 ms。

2.4 采用这种同步淘汰策略,吞吐量降低怎么办?

那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。

2.5 第二次删除,如果删除失败怎么办?

这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求 A 进行更新操作,另一个请求 B 进行查询操作,为了方便,假设是单库:

  1. 请求 A 进行写操作,删除缓存
  2. 请求 B 查询发现缓存不存在
  3. 请求 B 去数据库查询得到旧值
  4. 请求 B 将旧值写入缓存
  5. 请求 A 将新值写入数据库
  6. 请求 A 试图去删除请求 B 写入对缓存值,结果失败了。

这也就是说,如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。
如何解决呢?
具体解决方案,看第三种更新策略的解析。

三、先更新数据库,再删除缓存(推荐)

Cache-Aside pattern

  • 失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
  • 命中:应用程序从cache中取数据,取到后返回。
  • 更新:先把数据存到数据库中,成功后,再让缓存失效。
3.1 这种情况不存在并发问题么?

不是的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生

  1. 缓存刚好失效
  2. 请求A查询数据库,得一个旧值
  3. 请求B将新值写入数据库
  4. 请求B删除缓存
  5. 请求A将查到的旧值写入缓存

ok,如果发生上述情况,确实是会发生脏数据。

3.2 然而,发生这种情况的概率又有多少呢?

发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。

3.3 如何解决上述并发问题?

首先,给缓存设有效时间是一种方案。其次,采用策略(二 )里给出的异步延时删除策略,保证读请求完成以后,再进行删除操作。

3.4 还有其他造成不一致的原因么?

有的,这也是缓存更新策略(二)和缓存更新策略(三)都存在的一个问题,如果删缓存失败了怎么办,那不是会有不一致的情况出现么。比如一个写数据请求,然后写入数据库了,删缓存失败了,这会就出现不一致的情况了。这也是缓存更新策略(二)里留下的最后一个疑问。

如何解决?

四、删除缓存重试机制

不管是延时双删还是Cache-Aside的先操作数据库再删除缓存,如果第二步的删除缓存失败呢,删除失败会导致脏数据哦~

删除失败就多删除几次呀,保证删除缓存成功呀~ 所以可以引入删除缓存重试机制

image.png

  1. 写请求更新数据库
  2. 缓存因为某些原因,删除失败
  3. 把删除失败的key放到消息队列
  4. 消费消息队列的消息,获取要删除的key
  5. 重试删除缓存操作

五、读取 biglog 异步删除缓存

重试删除缓存机制还可以,就是会造成好多业务代码入侵。其实,还可以通过**数据库的 binlog 来异步淘汰 key **。

image.png

以 mysql 为例 可以使用阿里的 canal 将 binlog 日志采集发送到 MQ 队列里面,然后通过 ACK 机制确认处理这条更新消息,删除缓存,保证数据缓存一致性

六、总结

[外链图片转存中…(img-Fn5n3Rul-1647961388551)]

以 mysql 为例 可以使用阿里的 canal 将 binlog 日志采集发送到 MQ 队列里面,然后通过 ACK 机制确认处理这条更新消息,删除缓存,保证数据缓存一致性

六、总结

推荐使用先更新数据库,再删除缓存。只有很低的概率会出现数据不一致的情况,而且使用 redis 就是为了快速,保证强一致性一定会有性能上的损失,只能保证最终一致性。

<think>好的,我现在需要帮助用户了解如何保证MySQL和Redis之间的数据一致性。首先,我得回顾一下用户之前的提问历史,之前他们问过引入布隆过滤器后的访问顺序,现在转向数据一致性,说明他们对系统架构中的缓存和数据库协同工作有进一步的兴趣。 用户可能正在设计一个使用Redis作为缓存的系统,需要确保数据在缓存和数据库之间的一致性。常见的问题是在高并发场景下,如何避免脏读或旧数据残留。用户可能想知道有哪些策略,以及这些策略的优缺点。 接下来,我需要考虑用户可能的身份。他们可能是开发人员或系统架构师,负责设计或维护一个高并发的应用系统。他们需要具体的策略,可能涉及技术细节,比如双写、延迟删除、事务机制等。同时,用户可能对实际应用中的注意事项和最佳实践感兴趣,比如如何处理失败情况,如何选择过期时间等。 用户的需求不仅仅是了解理论上的方法,还需要知道实际应用中可能遇到的问题和解决方案。比如,双写模式下的原子性问题,或者缓存穿透的应对措施。此外,用户可能没有明确说出他们遇到的特定问题,但需要覆盖常见场景,比如缓存雪崩、穿透、击穿等,以及如何在这些情况下保持数据一致。 我需要组织回答的结构,先介绍主要策略,再详细说明每种方法的实现和注意事项,最后总结最佳实践。同时,需要强调没有完美的方案,需要根据业务场景权衡利弊。例如,对于强一致性要求的场景,可能需要更复杂的事务机制,而高并发场景可能更倾向于最终一致性,通过设置合理的TTL和异步更新来平衡性能和数据准确性。 还要考虑用户可能的误区,比如认为删除缓存可以完全避免不一致,但实际上在高并发下仍然可能有问题,比如经典的先更新数据库再删除缓存时的读写竞争问题。这时候需要引入锁机制或版本号来控制。 最后,要提醒用户注意监控和日志的重要性,确保在出现不一致时能够及时发现和处理,比如通过定期校验数据或设置报警机制。</think>在分布式系统中,MySQL 和 Redis 的数据一致性保障是一个经典难题。以下是常见的解决方案及其核心逻辑: --- ### **一、核心问题** - **缓存与数据库的读写分离特性**:Redis 作为缓存层,数据可能滞后于 MySQL - **并发场景下的时序问题**:如「先更新数据库还是先删缓存」 - **失败重试机制**:网络抖动或服务宕机可能导致操作失败 --- ### **二、常用策略** #### **1. 同步双写模式** **流程**: ```text 写请求 → 更新 MySQL → 更新 Redis → 返回结果 ``` **特点**: - 强一致性要求场景下使用 - **风险**:若第二步 Redis 更新失败,会导致数据不一致 - **优化**:需引入事务或异步补偿(如通过消息队列重试) #### **2. 延迟双删策略** **流程**: ```text 写请求 → 删除 Redis → 更新 MySQL → 延迟再删 Redis → 返回结果 ``` **特点**: - 通过二次删除降低并发读写导致脏数据的概率 - **延迟时间**:需略大于主从同步耗时(通常 500ms-1s) - **典型场景**:解决「先更新数据库,后删缓存」期间读请求导致的旧数据回填 #### **3. 异步订阅(Binlog 同步)** **流程**: ```text MySQL 更新 → 解析 Binlog → 更新 Redis ``` **工具**: - Canal(阿里开源的 MySQL Binlog 增量订阅组件) - Debezium(支持多种数据库的变更数据捕获工具) **优势**: - 彻底解耦业务代码与缓存更新逻辑 - 保证最终一致性 --- ### **三、关键细节** #### **1. 缓存删除 vs 更新** - **优先选择删除**: 直接更新缓存可能因并发写导致数据错乱(如两个线程同时更新缓存) - **特殊场景**: 若缓存数据结构复杂(如排行榜),可设计为「先删后异步重建」 #### **2. 缓存过期时间** - **设置 TTL**: 所有缓存必须设置过期时间(兜底机制,防止永久不一致) - **随机偏移量**: 在基础 TTL 上增加随机值(例如 $300 \pm 50$ 秒),避免缓存雪崩 #### **3. 并发控制** - **分布式锁**: 对关键数据加锁(如 Redlock),确保同一时刻只有一个线程操作数据 - **版本号机制**: 为数据添加版本标识,拒绝处理过期版本请求 --- ### **四、经典问题与解决方案** #### **1. 缓存穿透** **现象**:频繁查询不存在的数据(绕过 Redis 直击 MySQL) **方案**: - 布隆过滤器拦截非法请求 - 缓存空值(需设置较短 TTL) #### **2. 缓存击穿** **现象**:热点 key 过期瞬间,大量请求压垮数据库 **方案**: - 互斥锁重建缓存(如 Redis 的 `SETNX` 命令) - 永不过期策略 + 后台异步更新 #### **3. 缓存雪崩** **现象**:大量 key 同时过期导致请求涌向数据库 **方案**: - 随机化 TTL - 多级缓存架构(如本地缓存 + Redis) --- ### **五、总结** | 策略 | 一致性强度 | 实现复杂度 | 适用场景 | |-------------------|------------|------------|------------------------| | 同步双写 | 强 | 高 | 金融、交易系统 | | 延迟双删 | 最终 | 中 | 电商、社交平台 | | Binlog 异步同步 | 最终 | 低 | 大数据量、读写分离架构 | **核心原则**: - 没有银弹方案,需根据业务容忍度选择一致性级别 - 优先保证数据库正确性,允许短暂缓存不一致 - 必须设计兜底机制(如 TTL、熔断降级)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值