文章目录
flash-attn下载存在问题的读者,请直接跳转并阅读第四步:离线下载flash-attention。
前言
由于LLM参数量巨大、且国内网络不佳,在服务器部署Qwen系列模型会存在缓存模型权重难等问题。依照Qwen官方的README部署模型会存在问题,比如模型下载过程中进度卡死、flash-attn相关库难以安装等问题。因为,为了解决上述问题,将整理一个教程,快速部署Qwen系列模型。
Qwen官网
https://github.com/QwenLM/Qwen2.5-VL
第一步:新建虚拟环境
conda create -n Qwen python=3.10.16
conda activate Qwen
第二步:设置加速源
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/
第三步:安装基础环境
创建Qwen文件夹,并新建requirements.txt,把下面内容复制到里面。
requirements.txt中的内容如下,复制下面内容到txt文件中
torch==2.6.0
torchvision==0.21.0
transformers==4.51.3
accelerate
qwen-vl-utils[decord]
安装需要的包
pip install -r requirements.txt
第四步:离线下载flash-attention
下载地址:https://github.com/Dao-AILab/flash-attention/releases/
找到你对应的版本flash_attn-2.74.post(cuda我是安装的12.0,其它的步骤一样就可以选择下面这个包,记得选择False这个版本。)
选择自己对应的离线版本即可。
下载版本:flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
把下载的离线文件上传到服务器当前用户的Download文件夹中,然后安装该文件
pip install flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
第五步:下载模型权重
近期,用huggface镜像下载会出现不稳定的情况;请改用modelscope下载权重
# 用魔塔社区下载
pip install modelscope
# 下载时指定路径,加载模型的时候要指向到该路径
modelscope download --model Qwen/Qwen2.5-VL-3B-Instruct --local_dir ./Qwen2.5-VL-3B-Instruct
下载完成
第六步:运行代码:修改对应模型权重路径
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
# default: Load the model on the available device(s)
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
"./Qwen2.5-VL-3B-Instruct", torch_dtype="auto", device_map="auto"
)
# We recommend enabling flash_attention_2 for better acceleration and memory saving, especially in multi-image and video scenarios.
# model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
# "Qwen/Qwen2.5-VL-7B-Instruct",
# torch_dtype=torch.bfloat16,
# attn_implementation="flash_attention_2",
# device_map="auto",
# )
# default processor
processor = AutoProcessor.from_pretrained("./Qwen2.5-VL-3B-Instruct")
# The default range for the number of visual tokens per image in the model is 4-16384.
# You can set min_pixels and max_pixels according to your needs, such as a token range of 256-1280, to balance performance and cost.
# min_pixels = 256*28*28
# max_pixels = 1280*28*28
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(model.device)
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
轻松运行得到结果,如何和我设置一样就直接运行,不一致就把加载模型路径切换到你下载权重的地方。