前言
本文中运用了平衡二叉搜索树,也是java里面的TreeSet数据结构。
也运用了桶。感兴趣的朋友可以了解一下。
题目
分析
概述
这篇文章是为中级读者准备的,文章中会介绍了以下几种方法:
二叉搜索树,散列表和桶。
方法一 (线性搜索) 【超时】
思路
将每个元素与它之前的 k个元素比较,查看它们的数值之差是不是在 t以内。
算法
解决这个问题需要找到一组满足以下条件的 i和 j:
我们需要维护了一个k大小的滑动窗口。这种情况下,第一个条件始终是满足的,只需要通过线性搜索来检查第二个条件是否满足就可以了。
public boolean containsNearbyAlmostDuplicate(int[] nums, int k, int t) {
for (int i = 0; i < nums.length; ++i) {
for (int j = Math.max(i - k, 0); j < i; ++j) {
if (Math.abs(nums[i] - nums[j]) <= t) return true;
}
}
return false;
}
// Time limit exceeded.
复杂度分析
- 时间复杂度:O*(*n min(k,n))
每次搜索都将花费O(min(k,n)) 的时间,需要注意的是一次搜索中我们最多比较 n次,哪怕 k 比 n大。 - 空间复杂度:O(1)
额外开辟的空间为常数个
方法二 (二叉搜索树) 【通过】
思路
- 如果窗口中维护的元素是有序的,只需要用二分搜索检查条件二是否是满足的就可以了。
- 利用自平衡二叉搜索树,可以在对数时间内通过
插入
和删除
来对滑动窗口内元素排序。
算法
方法一真正的瓶颈在于检查第二个条件是否满足需要扫描滑动窗口中所有的元素。因此我们需要考虑的是有没有比全扫描更好的方法。
如果窗口内的元素是有序的,那么用两次二分搜索就可以找到 x+t 和 x-t 这两个边界值了。
然而不幸的是,窗口中的元素是无序的。这里有一个初学者非常容易犯的错误,那就是将滑动窗口维护成一个有序的数组。虽然在有序数组中 搜索
只需要花费对数时间,但是为了让数组保持有序&#x