
深度学习之超参数调试
无宠不惊过一生
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络中的偏差与方差,及其解决方法
这里假设所用的分类器是最优分类器,而且训练集、验证集、测试集均属于同一分布。 偏差与方差主要与两个因素有关: 训练集误差(train set error)、验证集误差(dev set error) train set error 1%(很小) 15%(较大) 15% 0.5% dev set error 11%(较大) 16%(较大,但相较于train...原创 2019-05-17 20:09:02 · 5531 阅读 · 0 评论 -
深度学习中的调参经验
调参其实就是trial-and-error,没有其他捷径可以走。快速尝试, 快速纠错这是调参的关键。 目录 常用的调参经验: 自动调参方法: 这是一个很好的链接, 说明了如何从零开始不断的trial-and-error(其实这里面没遇到什么error): Using convolutional neural nets to detect facial keypoints tutorial...原创 2019-08-10 18:14:57 · 1076 阅读 · 0 评论