研读“Conditional Meta-Network for Blind Super-Resolution with Multiple Degradations“

该研究提出了一种条件元网络框架(CMDSR),旨在解决图像盲超分辨率中的多样退化问题。CMDSR通过ConditionNet从支持集中学习退化先验,并使用BaseNet根据条件特征调整参数,实现对输入分布变化的适应。实验表明,CMDSR在处理匹配和失配退化情况时表现出色,并且在实际图像上也有良好的性能。此外,CMDSR适用于不同的超分辨率网络结构,具有较少的参数和较高的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:https://arxiv.org/pdf/2104.03926.pdf
代码:https://github.com/guanghaoyin/CMDSR

这是浙江大学以及字节跳动AI Lab合作发表于2022 IEEE TIP(中科院SCI一区),针对图像盲超分的一篇工作。

Abstract

尽管单图像超分方法在单个退化方式下取得了不错的效果,在具有多样退化影响的真实场景下表现并不好。现有的一些针对多样退化的盲与非盲方法在训练与测试数据存在分布偏移时效果显著降低。因此,本文首次提出条件元网络框架(CMDSR),帮助SR框架去学习适应输入分布的变化。
用提出的ConditionNet在任务水平上提取退化先验,提取到的退化先验用于调整SR网络的参数。具体来说,ConditionNet从支持集(来自相同任务的一系列图像块)中学习退化先验,然后,SR网络哦根据条件特征快速调整参数。并且,为了更好的提取退化先验,提出任务对比损失去减少任务内的距离、增加任务间的距离。在没有预定义退化图的情况下,CMDSR可通过单个参数更新来取得可观的SR结果。

Proposed Method

在这里插入图片描述
提出的框架由ConditionNet与BaseNet组成。
ConditionNet<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值