Arma模型预测算法在两年之前有看过,当时没有太仔细看没能理解,最近结合网上几篇比较Nice 的关于ARMA && ARIMA算法的博客,对该算法有了进一步了解,将自己的理解进行整理。
1 概述
Arma模型(自回归移动平均模型)是时间序列分析中常用的模型之一,它可以用于预测未来的时间序列值。Arma模型的核心思想是将时间序列看作是自回归和移动平均过程的组合。其中,自回归过程指的是时间序列值与其前一时刻值之间的关系;移动平均过程指的是时间序列值与其前一时刻的噪声误差之间的关系。
Arma模型可以表示为ARMA(p, q),其中p表示自回归项的阶数,q表示移动平均项的阶数。具体地,Arma模型可以写成如下形式:
Y t = α 1 Y t − 1 + α 2 Y t − 2 + . . . + α p Y t − p + ϵ t + β 1 ϵ t − 1 + β 2 ϵ t − 2 + . . . + β q ϵ t − q Y_t=\alpha_1Y_{t-1}+\alpha_2Y_{t-2}+...+\alpha_pY_{t-p}+\epsilon_t+\beta_1\epsilon_{t-1}+\beta_2\epsilon_{t-2}+...+\beta_q\epsilon_{t-q} Yt=α1Yt−1+α2Yt−2+...+αpYt−p+ϵt+β1ϵt−1+β2ϵt−2+...+βqϵt−q
其中, Y t Y_t Y