二、LDA(线性判别分析)原理

线性判别分析(LDA)是机器学习中的一个关键概念,旨在最大化类别间的距离并最小化类别内的距离。通过定义线性函数来实现分类,每个类别对应一个公式以确定样本的分类。LDA在人脸识别、图像识别等领域有广泛应用,并与特征值计算紧密相关,常常用于特征降维和数据预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)
https://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html
线性判别分析(Linear Discriminant Analysis)(一)(讲的非常好) https://www.cnblogs.com/jerrylead/archive/2011/04/21/2024384.html
人脸识别经典算法三:Fisherface(LDA) https://blog.csdn.net/feirose/article/details/39552997
LDA 两类Fisher线性判别分析及python实现 https://blog.csdn.net/u012005313/article/details/50933517

LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好

所以我们需要定义几个关键的值

要说明白LDA,首先得弄明白线性分类器(Linear Classifier):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:
在这里插入图片描述
当满足条件:对于所有的j,都有Yk > Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。

特征值表示的是矩阵的性质,当我们取到矩阵的前N个最大的特征值的时候,我们可以说提取到的矩阵主要的成分(这个和之后的PCA相关,但是不是完全一样的概念)。在机器学习领域,不少的地方都要用到特征值的计算,比如说图像识别、pagerank、LDA、还有之后将会提到的PCA等等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值