机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA)
https://www.cnblogs.com/LeftNotEasy/archive/2011/01/08/lda-and-pca-machine-learning.html
线性判别分析(Linear Discriminant Analysis)(一)(讲的非常好) https://www.cnblogs.com/jerrylead/archive/2011/04/21/2024384.html
人脸识别经典算法三:Fisherface(LDA) https://blog.csdn.net/feirose/article/details/39552997
LDA 两类Fisher线性判别分析及python实现 https://blog.csdn.net/u012005313/article/details/50933517
LDA分类的一个目标是使得不同类别之间的距离越远越好,同一类别之中的距离越近越好
所以我们需要定义几个关键的值
要说明白LDA,首先得弄明白线性分类器(Linear Classifier):因为LDA是一种线性分类器。对于K-分类的一个分类问题,会有K个线性函数:
当满足条件:对于所有的j,都有Yk > Yj,的时候,我们就说x属于类别k。对于每一个分类,都有一个公式去算一个分值,在所有的公式得到的分值中,找一个最大的,就是所属的分类了。
特征值表示的是矩阵的性质,当我们取到矩阵的前N个最大的特征值的时候,我们可以说提取到的矩阵主要的成分(这个和之后的PCA相关,但是不是完全一样的概念)。在机器学习领域,不少的地方都要用到特征值的计算,比如说图像识别、pagerank、LDA、还有之后将会提到的PCA等等。