机器人动力学(牛顿欧拉推导)

本文详细介绍了机器人动力学中的刚体加速度、线加速度、角加速度和质量分布,并重点阐述了牛顿欧拉方程,包括牛顿方程和欧拉方程。通过计算速度和加速度外推法、内推法,来求解驱动关节运动所需力矩。此外,还讨论了惯性张量和平行移轴定理在质量分布中的应用,以及动力学方程的状态空间和形位空间表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刚体加速度

分析刚体加速度时,在任一顺势瞬时,对刚体的线速度和角速度进行求导,可以分别得到线加速度和角加速度在这里插入图片描述

线加速度

根据前一章推导得到的,坐标系{A}下的速度矢量BQ^BQBQ
当坐标系{A}的原点与坐标系{B}重合时,速度矢量BQ^BQBQ可表示为:AVQ=BARBVQ+AΩB×AQ^{A}\textrm{V}_{Q}=^A_BR^BV^Q+^{A}\Omega_B\times^{A}\textrm{Q}AVQ=BARBVQ+AΩB×AQ (1)
将左侧求导改写为:
ddt(AVQ)=BARBVQ+AΩB×AQ\frac {d} {dt}(^{A}\textrm{V}_{Q})=^A_BR^BV^Q+^{A}\Omega_B\times^{A}\textrm{Q}dtd(AVQ)=BARBVQ+AΩB×AQ(2)
对式(1)求导,可得当坐标系{A}和坐标系{B}原点重合时,BQ^BQBQ的加速度在坐标系{A}中的表达式:
AVQ˙=ddt(BARBVQ)+AΩB˙×BARBQ+AΩB×ddt(BARBQ)\dot{^{A}\textrm{V}_{Q}}=\frac {d} {dt}(^A_BR^BV^Q)+\dot{^{A}\Omega_B}\times^A_BR^BQ+^{A}\Omega_B\times\frac{d}{dt}(^A_BR^BQ)AVQ˙=dtd(BARBVQ)+AΩB˙×BARBQ+AΩB×dtd(BARBQ)(3)
将(3)式右侧的第一项和最后一项带入式(2)中,整理后可得:
AVQ˙=BARBVQ˙+2AΩB×BARBVQ+AΩB˙×BARBQ+AΩB×(AΩB×BARBQ)\dot{^{A}\textrm{V}_{Q}}=^A_BR\dot{^BV_Q}+2^{A}\Omega_B\times^A_BR^{B}\textrm{V}_Q+\dot{^{A}\Omega_B}\times^A_BR^BQ+^{A}\Omega_B\times({^{A}\Omega_B}\times^A_BR^BQ)AVQ˙=BARBVQ˙+2AΩB×BARBVQ+</

### Delta机器人正向动力学中的牛顿-欧拉方程推导 #### 力和力矩的关系定义 对于任意刚体,在三维空间内的运动可以通过线性和角动量来描述。设 \( \mathbf{F} \) 表示作用于物体上的总外力,\( \mathbf{T} \) 是相对于某固定点的合外力矩,则有: \[ \sum{\mathbf{F}} = m\mathbf{a}_C \] 这里 \( m \) 代表物体的质量,\( \mathbf{a}_C \) 则是指质心处的加速度矢量[^2]。 对于转动部分, \[ \sum{\mathbf{T}}_O = I_O\dot{\omega}+\omega\times(I_O\omega) \] 其中 \( O \) 可以是任何一点,通常取为坐标系原点或质心;\( I_O \) 是该点对应的惯性张量矩阵;\( \omega \) 和 \( \dot{\omega} \) 分别指代角速度及其变化率即角加速度。 当应用到多连杆结构如Delta机器人时,上述基本原理需逐级应用于各连接环节,并考虑到相邻部件间的相对位姿变换影响。 #### 多体系统的递归算法实现 为了简化计算并提高效率,实际操作中常采用自底向上(从末端执行器往基座方向)或者自顶向下(反之亦然)的方式来进行迭代求解整个机构的动力响应特性。具体来说就是先处理最远离根节点的那个子系统,再逐步累加以获得整体性能指标。 在这个过程中,每一步都要更新当前考察对象的位置姿态参数以及它所承受的作用效果——这涉及到局部坐标转换、雅可比矩阵构建等一系列几何运算步骤[^1]。 最终得到的是一个能够反映所有内部约束条件下的完整力学表达式链路集合,从而完成对目标装置动态特性的全面刻画。 ```matlab function [acceleration, angular_acceleration] = newton_euler_link(i) % 计算第i个链接的线加速度和角加速度 if i == num_links % 如果是最底部的一个link acceleration = external_force / mass; angular_acceleration = inv(inertia_tensor)*(external_torque - cross(angular_velocity, inertia_tensor*angular_velocity)); else parent_acc = ... ; % 获取父节点的信息 local_transform = ... ; global_pos_vel_acc = transform(parent_acc, local_transform); net_external_forces_and_moments = compute_net_effects(); acceleration = (net_external_forces_and_moments.force - ... cross(global_pos_vel_acc.angular_velocity,... cross(local_position_to_center_of_mass,... global_pos_vel_acc.linear_velocity))) ./ mass; angular_acceleration = inv(inertia_tensor)*... (net_external_forces_and_moments.torque - ... cross(angular_velocity,inertia_tensor*angular_velocity)); end end ```
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值