HuggingFace 命令行快速配置(含遇到的BUG解决方法)

HuggingFace作为当前AI入门者快速上手,接触大佬发布的开源模型、数据集的必经之路,是每个想要从事AI领域的必会科目。HuggingFace在AI领域的作用相当于代码领域的github,我们可以在HuggingFace中使用别人上传到HuggingFace的开源模型和数据集,并且不需要配置复杂的环境。这么好的工具我们该如何上手呢,下面我带大家如何在命令行配置HuggingFace。

HuggingFace相关链接:
HuggingFace官网
HuggingFace官方中文文档

第一步 配置虚拟环境

注意:这里要安装高于3.9版本的python,我安装的3.10版本

conda create -n transformer python=3.10

如图所示即为创建成功
在这里插入图片描述

激活环境

conda activate transformer

安装transform包

pip install transformers

安装完成后需要安装对应cuda版本的pytorch
输入

nvidia-smi

图中红框便是你电脑的cuda版本
在这里插入图片描述
去pytorch官网:pytorch官网下载对应cuda版本或者低于你主机版本的pytorch

第二步 测试运行情况

编写一个python文件

import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
from transformers import pipeline

classifier = pipeline("zero-shot-classification")
res = classifier(
    "this is a course about python list comprehension",
    candidate_labels=["edition","politics","business"],
                 )
print(res)

此处有个坑,记得把Numpy降一下版本

pip uninstall Numpy #卸载高版本Numpy包
pip install Numpy==1.23.5

在这里插入图片描述
运行python文件,显示如下内容即为成功,此代码是调用零样本学习算法,分析这句话是属于列表中哪一类别,根据结果的显示edution可能性高达0.78,与教育相关。由于我们在代码中没有调用gpu和模型因此会有提示,不影响使用。
在这里插入图片描述

到此HuggingFace命令行配置变完成了!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值