torch.Tensor和torch.tensor

本文探讨了PyTorch中Tensor构造器的过载问题,解释了为什么将其拆分为torch.tensor和torch.empty。讨论了torch.tensor和torch.Tensor之间的相似性和效率,指出两者在传递数据时的工作方式类似,且效率相当,主要区别在于API的设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Our torch.Tensor constructor is overloaded to do the same thing as both torch.tensor and torch.empty. We thought this overload would make code confusing, so we split torch.Tensor into torch.tensor and `torch.empty.

So @yxchng yes, to some extent, torch.tensor works similarly to torch.Tensor (when you pass in data). @ProGamerGov no, neither should be more efficient than the other. It’s just that the torch.empty and torch.tensor have a nicer API than our legacy torch.Tensor constructor.

参考:
【PyTorch】Tensor和tensor的区别
What is the difference between Tensor and tensor? Is Tensor going to be deprecated in the future?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值