代码随想录训练营Day50|123.买卖股票的最佳时机III ;188.买卖股票的最佳时机IV

这两段代码分别解决了买卖股票的最佳时机III和IV的问题,采用动态规划方法,通过维护一个dp数组来记录在不同状态下所能获得的最大利润。在每个价格点,计算持有和卖出股票的最优策略,从而求得最大总利润。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 123.买卖股票的最佳时机III  

class Solution {
    public int maxProfit(int[] prices) {
        //dp数组设置五个状态
        //0表示没有操作
        //1表示第一次持有
        //2表示第一次卖出
        //3表示第二次持有
        //4表示第二次卖出
        int[][] dp = new int[prices.length][5];
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        dp[0][2]=0;
        dp[0][3]=-prices[0];
        dp[0][4]=0;

        for(int i=1;i<prices.length;i++){
            dp[i][0] = dp[i-1][0];
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0]-prices[i]);
            dp[i][2] = Math.max(dp[i-1][2], dp[i-1][1]+prices[i]);
            dp[i][3] = Math.max(dp[i-1][3], dp[i-1][2]-prices[i]);
            dp[i][4] = Math.max(dp[i-1][4], dp[i-1][3]+prices[i]);

        }

        return dp[prices.length-1][4];
    }
}

 

 

188.买卖股票的最佳时机IV 

class Solution {
    public int maxProfit(int k, int[] prices) {
        int[] dp = new int[2*k+1];
        dp[0] = 0;
        for(int i=1;i<=2*k;i+=2){
            dp[i]=-prices[0];
            dp[i+1]=0;
        }
        for(int i=1;i<prices.length;i++){
            
            for(int j=1;j<=2*k;j+=2){
                dp[j] = Math.max(dp[j], dp[j-1]-prices[i]);
                dp[j+1] = Math.max(dp[j+1], dp[j]+prices[i]);
            }
        }

        return dp[2*k];
    }
}

 

### 关于代码随想录 Day04 的学习资料与解析 #### 一、Day04 主要内容概述 代码随想录 Day04 的主要内容围绕 **二叉树的遍历** 展开,包括前序、中序和后序三种遍历方式。这些遍历可以通过递归实现,也可以通过栈的方式进行迭代实现[^1]。 #### 二、二叉树的遍历方法详解 ##### 1. 前序遍历(Pre-order Traversal) 前序遍历遵循访问顺序:根节点 -> 左子树 -> 右子树。以下是基于递归的实现: ```python def preorderTraversal(root): result = [] def traversal(node): if not node: return result.append(node.val) # 访问根节点 traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 对于迭代版本,则可以利用显式的栈来模拟递归过程: ```python def preorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: result.append(current.val) # 访问当前节点 stack.append(current) # 将当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 current = current.right # 转向右子树 return result ``` ##### 2. 中序遍历(In-order Traversal) 中序遍历遵循访问顺序:左子树 -> 根节点 -> 右子树。递归实现如下: ```python def inorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 result.append(node.val) # 访问根节点 traversal(node.right) # 遍历右子树 traversal(root) return result ``` 迭代版本同样依赖栈结构: ```python def inorderTraversal_iterative(root): stack, result = [], [] current = root while stack or current: while current: stack.append(current) # 当前节点压入栈 current = current.left # 转向左子树 current = stack.pop() # 弹出栈顶元素 result.append(current.val) # 访问当前节点 current = current.right # 转向右子树 return result ``` ##### 3. 后序遍历(Post-order Traversal) 后序遍历遵循访问顺序:左子树 -> 右子树 -> 根节点。递归实现较为直观: ```python def postorderTraversal(root): result = [] def traversal(node): if not node: return traversal(node.left) # 遍历左子树 traversal(node.right) # 遍历右子树 result.append(node.val) # 访问根节点 traversal(root) return result ``` 而迭代版本则稍复杂一些,通常采用双栈法或标记法完成: ```python def postorderTraversal_iterative(root): if not root: return [] stack, result = [root], [] while stack: current = stack.pop() result.insert(0, current.val) # 插入到结果列表头部 if current.left: stack.append(current.left) # 先压左子树 if current.right: stack.append(current.right) # 再压右子树 return result ``` #### 三、补充知识点 除了上述基本的二叉树遍历外,Day04 还可能涉及其他相关内容,例如卡特兰数的应用场景以及组合问题的基础模板[^2][^4]。如果遇到具体题目,可以根据实际需求调用相应算法工具。 --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值