代码随想录训练营Day53|1143.最长公共子序列;1035.不相交的栈;53.最大子序和

文章介绍了使用动态规划方法解决两个字符串的最长公共子序列问题和数组中的最大子序和问题。在每个问题中,都通过二维数组存储中间状态,以避免回溯并优化解决方案。此外,还展示了如何在不相交的栈问题中应用类似的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1143.最长公共子序列

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int[][] dp= new int[text1.length()+1][text2.length()+1];
        for(int i=1;i<=text1.length();i++){
            for(int j=1;j<=text2.length();j++){
                if(text1.charAt(i-1)==text2.charAt(j-1)){
                    dp[i][j] = dp[i-1][j-1] + 1;
                }
                else{
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}

 

1035.不相交的栈

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int[][] dp=new int[nums1.length+1][nums2.length+1];

        for(int i=1;i<=nums1.length;i++){
            for(int j=1;j<=nums2.length;j++){
                if(nums1[i-1]==nums2[j-1]){
                    dp[i][j] = dp[i-1][j-1]+1;
                }
                else{
                    dp[i][j] = Math.max(dp[i][j-1], dp[i-1][j]);
                }
            }
        }
        return dp[nums1.length][nums2.length];
    }
}

 

53.最大子序和

class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp= new int[nums.length];
        dp[0]=nums[0];
        int res=dp[0];
        for(int i=1;i<nums.length;i++){
            dp[i] = Math.max(dp[i-1]+nums[i], nums[i]);
            res = Math.max(res, dp[i]);
        }
        return res;
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值