( 回溯算法) 491. 递增子序列 ——【Leetcode每日一题】

❓491. 递增子序列

难度:中等

给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。

数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。

示例 1:

输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]

示例 2:

输入:nums = [4,4,3,2,1]
输出:[[4,4]]

提示:

  • 1 <= nums.length <= 15
  • -100 <= nums[i] <= 100

💡思路:回溯

本题可以使用回溯求解,可以将本问题切割成很多个小部分,只考虑其中一个数,然后将剩余的数往下递归处理,可以理解成好多层,每层只加一个元素:

  • 定义一个数组 tmp 保存递增子序列,由于递增子序列中 至少有两个元素,所以只要递增子序列的长度如果大于 1 ,则是一种可能;
  • 还要考虑去重的情况,可以使用 哈希表 或者 使用数组(元素范围为[-100, 100])保存进行去重,这里使用数组:
    • 新的一层 used 都会重新定义(清空),所以要知道 used 只负责本层!

在这里插入图片描述

🍁代码:(Java、C++)

Java

class Solution {
    private List<List<Integer>> ans = new ArrayList<>();
    private List<Integer> tmp = new ArrayList<>();
    private void backtracking(int[] nums, int startIndex){
        if(tmp.size() > 1){//如果长度大于1就是一种可能
            ans.add(new ArrayList<>(tmp));
        }
        int[] used = new int[201];//使用数组对本层元素进行去重
        for(int i = startIndex; i < nums.length; i++){
            if((!tmp.isEmpty() && nums[i] < tmp.get(tmp.size() - 1)) || (used[nums[i] + 100] == 1)){//排除较小的数和已经使用过的数
                continue;
            }
            used[nums[i] + 100] = 1;// 记录这个元素在本层用过了,本层后面不能再用了
            tmp.add(nums[i]);
            backtracking(nums, i + 1);
            tmp.remove(tmp.size() - 1);//回溯,弹出最后一个元素,继续遍历其他可能
        }
    }

    public List<List<Integer>> findSubsequences(int[] nums) {
        backtracking(nums, 0);
        return ans;
    }
}

C++

class Solution {
private:
    vector<vector<int>> ans;
    vector<int> tmp;
    void backtracking(vector<int>& nums, int startIndex){
        if(tmp.size() > 1){//如果长度大于1就是一种可能
            ans.push_back(tmp);
        }
        int used[201] = {0}; //使用数组对本层元素进行去重
        for(int i = startIndex; i < nums.size(); i++){
            if((!tmp.empty() && nums[i] < tmp.back()) || used[nums[i] + 100] == 1){//排除较小的数和已经使用过的数
                continue;
            }
            used[nums[i] + 100] = 1;// 记录这个元素在本层用过了,本层后面不能再用了
            tmp.push_back(nums[i]);
            backtracking(nums, i + 1);
            tmp.pop_back();//回溯,弹出最后一个元素,继续遍历其他可能
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        backtracking(nums, 0);
        return ans;
    }
};
🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:
  • 时间复杂度 O ( n ∗ 2 n ) O(n * 2^n) O(n2n),这里枚举所有子序列的时间代价是 O ( 2 n ) O(2^n) O(2n),每次检测序列是否合法和获取哈希值的时间代价都是 O ( n ) O(n) O(n),故渐近时间复杂度为 O ( n ∗ 2 n ) O(n * 2^n) O(n2n)
  • 空间复杂度 O ( n ) O(n) O(n)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

零點零壹

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值