EventKGE: Event knowledge graph embedding with event causal transfer
作者:Daiyi Li(南航)
来源:2023 Knowledge-Based Systems(中科院一区,影响因子8.8)
论文:[ScienceDirect]
代码:[暂无]
引用数:2
参考:[]
关键词:事件因果转移、事件知识图谱
数据集:[CEC2.0] [ACE2005(收费)] [ACE(github)]
摘要
传统的知识图嵌入(KGE)旨在将实体和关系映射到连续的空间向量中,为下游任务提供高质量的数据特征表示。然而,大多数KGs中的关系往往只反映静态实体之间的联系,而不能代表相关实体的动态活动和状态变化,这使得KGE模型无法有效地学习到丰富而全面的实体表示。在本文中,我们验证了嵌入事件知识在KG表示学习中的重要性,并提出了一种新的基于事件因果转移的事件KGE模型(EventKGE),该模型可以有效地维护事件KG中事件、实体和关系的语义信息,第二,对于给定的事件KG,通过构造的异构图(heterogeneous graph)将KG中的事件节点和实体节点进行集成。同时,在异构图中,事件节点和实体节点通过事件自变量类型连接,事件节点通过因果关系连接。最后,针对事件、事件与实体、实体与实体之间的关系,设计了一种基于注意力网络的信息传递方法,将事件信息集成到KGE中。在ACE2005语料库和CEC2.0数据集上的综合实验验证了我们设计的事件KGE模型在多个下游任务中是有效和稳定的。
注:问题是传统的KG中,关系只是连接静态的实体,关系本身也是静态的,没办法学到动态的实体和关系的表征。本篇工作解决的是优化表征的学习,让实体和关系的表征对实体活动的动态关系更好的建模。
同构图和异构图
同构图中,node的种类只有一种,一个node和另一个node的连接关系只有一种
- 例如在社交网络中,可以想象node只有‘人’这一个种类,edge只有‘认识’这一种连接。而人和人要么认识,要么不认识。
- 但是也可能细分有人,点赞,推文。则人和人可能通过认识连接,人和推文可能通过点赞连接,人和人也可能通过点赞同一篇推文连接(meta path)。这里节点、节点之间关系的多样性表达就需要引入异构图了。
异构图中,有很多种node。node之间也有很多种连接关系(edge),这些连接关系的组合则种类更多(meta-path), 而这些node之间的关系有轻重之分,不同连接关系也有轻重之分。比如在IMDB中,可以有三类node分别是Movie,Director和Actor
引言
第一段:KG的概念、应用和构建。略。
目前,大多数KGE方法都可以使用低维向量来捕捉KGs中实体和关系的语义信息,并取得了显著的效果。然而,由于传统KGs中的关系仅代表实体之间的静态物理连接,因此KGE模型无法学习全面的实体信息。同时,世界包含许多事件信息,这些信息主要用于传递动态和过程性知识。因此,以事件为中心的知识表示(如事件KGs)也是人们理解客观世界的一种重要方法。事实上,要理解客观世界中的一个实体,不仅需要考虑其静态属性和事实(facts),更重要的是,要理解和理解与该实体相关的动态事件。因此,基于这一思想,我们认为事件知识(event knowledge)不仅可以帮助嵌入模型学习更多关于KGs中实体和关系的信息,而且可以有效地提高KGE的质量,这对与知识表示相关的下游任务有很大帮助。
近年来,虽然对事件KGE的研究很少,但也取得了一些进展。例如:Ringsquandl等人[10]提出了一种基于事件日志增强KG中实体和关系表示的框架,有效提高了KG完成任务的准确性;程等人[11]提出了一种基于KGs的事件嵌入模型,该模型可以有效地将KGs的信息纳入事件嵌入学习的目标函数中,所学习的知识表示在下游任务中取得了显著效果。尽管这些方法通过事件信息有效地加强了KG的嵌入,但它们忽略了事件之间以及事件与实体之间的信息传递,这将导致KG中某些实体信息的丢失。因此,这些研究为事件信息有助于提高KGE的质量提供了证据。
在事件KG中,事件子图通常由以下部分组成:事件触发词event trigger words(描述事件的动词或短语,如图1中的火灾、逃生和伤害)和事件自变量arguments(事件中涉及的元素和相应的角色,如图中的事件时间、事件地方和事件对象 图1)。具体来说,事件知识对KG嵌入式模型的好处主要体现在四个方面:
(1) 与传统KGs中包含的信息的实体和关系相比,该事件的信息更加丰富和全面。事件之间的关系可以使不同事件中的实体获得关联。如图1所示,Event3可以让我们知道,上海一栋老别墅在景观过程中不仅发生了火灾,还有一位老人受伤。然而,传统KGs中的Event3只能指示损伤(injury)的发生。
(2) 传统的幼儿园往往只涉及两个整体和关系的三重。然而,由于事件通常包含事件触发词和事件自变量,因此可以捕获多个实体之间的关系,这使得信息在KG中的表示更加全面。如图1所示,事件1可以与两个实体(如“老别墅和上海”)相关联。
(3) 与传统的KGs相比,事件包含更多的关系信息(例如,实体之间的关系、实体与实体之间的联系以及事件之间的关系),可以有效地缓解数据稀疏的问题。事件不仅可以减少两个实体之间的距离,还可以连接更多孤立的实体节点(如“火灾、逃生和受伤”),从而丰富KG。
(4) 一般来说,事件的因果关系是事件关系中一种重要的语义关系,可以有效地表示客观世界中的因果关系。基于关系的传递性,可以根据因果关系来组织彼此相关的事件。因此,事件之间的因果关系可以为嵌入模型提供实体的静态信息和动态特征。如图1所示,原始KG可能只包含火灾事件的时间和地址等信息。然而,事件序列Fire→ 逃跑→ 伤害可以提供更多与火灾事件相关的信息(如逃生事件和伤害事件)。总之,相关事件可能包含不同的事件信息。因此,使用事件因果关系作为实体信息动态转换的桥梁,不仅可以清楚地了解相关事件的原