一文全解当前主流大模型及其核心算法的分类与特点

大模型(Large-scale Models)通常指参数量大、架构复杂、在特定任务或领域表现出色的深度学习模型。这些模型的算法核心往往基于Transformer 架构及其变体,同时结合了大规模数据、硬件加速和优化技巧。以下是当前主流大模型及其核心算法的分类与特点:

前排提示,文末有大模型AGI-CSDN独家资料包哦!


1. 基础架构:Transformer 及其变体

所有现代大模型的核心基础是Transformer 架构(2017年提出,来自论文《Attention is All You Need》)。其核心是自注意力机制(Self-Attention),能够高效捕获长距离依赖关系。

关键改进与变体算法
  • Relative Positional Encoding:在原始Transformer中,Positional Encoding是固定嵌入。改进方法(如《Transformer-XL》)通过相对位置编码,增强模型对位置信息的感知。
  • Sparse Attention:为降低计算复杂度(原始注意力是O(n²)),引入稀疏注意力机制:
    • Local Attention:仅关注局部区域。
    • Strided Attention(如《Longformer》):在长序列中稀疏计算注意力。
    • Product Keys Attention(如《Reformer》):用分组键值对分解计算。
  • Recurrent Transformer:结合RNN的循环机制(如《Transformer-LL》),解决长序列建模问题。
  • Efficient Attention
    • Linear Attention(如《Linformer》):将注意力计算复杂度降至O(n)。
    • LSH Attention(局部敏感哈希):通过哈希分桶加速。

2. 自然语言处理(NLP)大模型
2.1 编码器-解码器架构
  • GPT(Generative Pre-trained Transformer)系列

    • GPT(2018)、GPT-2(2019)、GPT-3/GPT-3.5(2020/2022):
      • 全解码器架构,通过自回归生成文本。
      • 使用掩码自注意力(Masked Self-Attention),预测下一个词。
      • 创新点:超大规模预训练(如GPT-3有1750亿参数)、从无标注文本中学习语言模式。
    • GPT-4/5(OpenAI):
      • 增强了多模态处理(结合图像-文本)、长上下文理解(如4096 tokens输入)。
  • BERT 系列(Bidirectional Encoder Representations from Transformers):

    • BERT(2018)、RoBERTa(Robustly Optimized BERT)、alBERT
      • 全编码器架构,通过掩码语言建模(MLM) 和下一句预测(NSP)训练。
      • 强项:双向编码能力,捕捉上下文依赖。
    • BERT + 深度优化变体
      • DistilBERT:通过知识蒸馏压缩模型。
      • BERT Series Variants:如BERT-wwm(整词-mask)、BERT-Max(加先验知识)。
  • T5(Text-to-Text Transfer Transformer)(Google,2019):

    • 统一所有任务为文本生成任务(如分类、翻译均视为输入文本→输出文本)。
    • 共享编码器-解码器架构,简化了任务适配。
  • XLNet(2019):

    • 通过排列注意力机制(permutation-based attention)结合双向上下文,解决了BERT的MLM预训练局限性。
2.2 多语言与跨模态模型
  • mBERT/WiBert & XLM/XLM-R

    • 多语言预训练,支持多种语言任务(如翻译、NER)。
  • M6/M6-large(阿里达摩院,2021):

    • 超大规模(10万亿参数)稀疏模型,结合MoE(Mixture-of-Experts)架构。
  • Cross-lingual/ Cross-modal

    • M2PM2P(微软):跨语言、跨模态对话生成。

3. 计算机视觉(CV)大模型
3.1 Transformer 模型
  • ViT(Vision Transformer,2021)

    • 直接将图像划分为patches,输入Transformer编码器。
    • 引入Class Token进行全局信息聚合,需要密集训练数据。
  • Swin Transformer(2021):

    • 针对CV优化的窗口化局部自注意力(Window-based Attention),降低计算量。
    • 分层架构(Stage-wise)处理不同分辨率的特征。
  • BERTv2(2022):

    • 结合ViT的分块输入与BERT的双向编码,提升图像视觉全局关系建模。
3.2 跨模态与生成模型
  • DALL-E(V1/V2,2021/2022)

    • 输入文本描述生成图像。
    • V1为离散VQ-VAE编码,V2用Transformer直接处理图像patch.
  • SD(Stable Diffusion,2022)

    • 使用Transformer的文本-图像对,结合扩散模型(Diffusion Models)实现高质量图像生成。
  • CLIP(Contrastive Language-Image Pretraining,2021)

    • 对比学习图文联合嵌入空间,用于跨模态对齐(如图像-文本检索、视觉问答)。

4. 多模态与通用大模型
  • M6(Multi-modal Pre-trained Model,阿里,2021)

    • 10万亿参数稀疏模型,支持文本-图像-代码多模态任务。
    • 混合专家(MoE)架构提升模型效率。
  • GPT-3 + 多模态扩展(OpenAI)

    • GPT-3 软件 3.5+ 添加图像理解能力,但主要依赖文本描述。
  • PaLM(Pathways Language Model,谷歌,2022)

    • 5400亿参数,专注于纯文本任务,后续延伸出多模态版本(PaLM-E用于机器人视觉)。
  • 通义千问(Qwen,阿里)和文心一言(Baidu Wenxin Yiyan)

    • 支持大规模语言理解、代码生成、多模态交互的文本驱动大模型。
  • SAM(Segment Anything Model,Meta,2023)

    • 专门用于图像分割,通过Adapter模块支持多种下游任务。

5. 优化与训练技术

大模型的高效训练依赖以下算法和策略:

  • 分布式训练

    • 数据并行(Data Parallel):通过并行数据切分减小单卡显存压力。
    • 模型并行(Model Parallel):分割模型层分配到不同设备。
    • Pipe_parallel(流水线并行):结合数据流与模型分片,提升吞吐量。
  • 混合精度训练(Mixed Precision Training):

    • 使用FP16或BF16浮点格式,加速计算并减少显存占用(需梯度缩放防止数值下溢)。
  • 优化器改进

    • AdamW:Adam优化器修正权重衰减。
    • LAMB(Layer-wise Adaptive Booster):针对超大模型的自适应梯度优化。
  • 高效预训练目标

    • Masked Image Modeling (MIM):ViT和Swin等视觉模型的预训练任务。
    • Contrastive Learning:如CLIP通过图文对比学习特征空间。
  • 知识蒸馏(Distillation)

    • 从大模型(教师模型)中提取知识,压缩为轻量级学生模型(如DistilBERT)。

6. 最新趋势与实验性模型
  • MoE(Mixture of Experts)架构

    • 模型中包含多个专家网络(Experts),通过门控机制选择最适合当前输入的子网络。
    • Switch TransformerM6 都是此类代表。
  • 扩散模型(Diffusion Models)

    • 通过反向去噪过程生成数据(图像、音频、文本),在生成任务(如Stable Diffusion)中表现出色。
  • 强化学习强化的大模型

    • AlphaFold(蛋白质结构预测)和 Gato(多任务代理)结合了深度强化学习。
  • 超大规模多模态模型

    • Qwen-vl、Llama-VL 等开源模型,在视觉-语言任务中展示跨模态推理能力。

7. 应用场景与模型选择
场景典型算法/模型核心特点
文本生成(对话、写作)GPT系列、通义千问自回归生成、超长上下文
多语言/跨语言NLPmBERT、M2PM2P、XLM-R支持多种语言任务
图像生成DALL-E 2、Stable Diffusion结合Transformer+扩散模型
视觉理解CLIP、SAM跨模态对齐、精准分割
代码生成/推理Code-BERT、GPT-3、Qwen理解并生成结构化文本(代码)

8. 技术挑战与未来方向
  • 算力与存储瓶颈:模型体积和计算需求呈指数增长(如2023年最大模型已超万亿参数)。
  • 能效优化:轻量化(如蒸馏、量化)和架构创新(如MoE)是关键。
  • 可解释性与可控性:避免幻觉(Hallucination)、增强对齐(Alignment)是NLP大模型的必答题。
  • 跨模态融合:单一模型处理文本、图像、语音、代码等多模态信息的下一步目标。

总结

大模型的算法核心是Transformer及其改进变体,结合大规模数据分布式训练多任务/多模态预训练。具体模型设计会针对任务特点改进架构(如ViT适应CV,Sam专注分割任务),同时工程优化(MoE、混合精度)是让这些庞然大物跑起来的隐形支柱。

如果你有具体领域的需求(如开发一个阅读理解模型),可以根据任务特点选择最相关的模型家族(如BERT或T5)并适当定制优化!

6.2 系统的持续优化

通过数据反馈、模型微调和算法优化,AI大模型问答系统能够不断进化。这使得系统不仅能够适应新兴问题,还能处理日益复杂的用户需求,为用户提供更加智能的服务。

如何学习AI大模型 ?

最先掌握AI的人,将会比较晚掌握AI的人有竞争优势

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

倘若大家对大模型抱有兴趣,那么这套大模型学习资料肯定会对你大有助益。

针对0基础小白:

如果你是零基础小白,快速入门大模型是可行的。
大模型学习流程较短,学习内容全面,需要理论与实践结合
学习计划和方向能根据资料进行归纳总结

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

请添加图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

这里我们能提供零基础学习书籍和视频。作为最快捷也是最有效的方式之一,跟着老师的思路,由浅入深,从理论到实操,其实大模型并不难

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值