GooLeNet是2014年ImageNet比赛的冠军,它的主要特点是网络不仅有深度,还在横向上具有”宽度“。由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核大小来提取特征就显得比较困难。空间分布范围更广的图像信息适合用较大的卷积核来提取特征,而空间范围比较小的图像信息则适合用较小的卷积核来提取其特征。为了解决这个问题,GooleNet提出了一种被称为Inception模块的方案。如图所示。
图 :Inception模块结构示意图
GooLeNet是2014年ImageNet比赛的冠军,它的主要特点是网络不仅有深度,还在横向上具有”宽度“。由于图像信息在空间尺寸上的巨大差异,如何选择合适的卷积核大小来提取特征就显得比较困难。空间分布范围更广的图像信息适合用较大的卷积核来提取特征,而空间范围比较小的图像信息则适合用较小的卷积核来提取其特征。为了解决这个问题,GooleNet提出了一种被称为Inception模块的方案。如图所示。
图 :Inception模块结构示意图