Tensor矩阵索引的用法(持续补充)

本文介绍了使用PyTorch进行矩阵取行与列的操作,通过实例展示了如何选取指定范围的行和列。从一个四维张量出发,逐步讲解了如何获取#行<=1的所有列、#行>1的所有列、行列限制的子矩阵和特定行列区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

取行列

import torch

x = torch.tensor([[1,2,3],[4,5,6],[7,8,9],[0,0,0]])
y1 = x[:1,:] #行<=1,所有列
y2 = x[1:,:] #行>1,所有列,等价于x[1:]
y3 = x[:1,:2] #行<=1,列<=2
y4 = x[1:,2:] #行>1,列>2

print("原矩阵\n",x)

print("#行<=1,所有列\n",y1)
print("#行>1,所有列\n",y2)
print("#行<=1,列<=2\n",y3)
print("#行>1,列>2\n",y4)

结果

原矩阵
 tensor([[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9],
        [0, 0, 0]])
#行<=1,所有列
 tensor([[1, 2, 3]])
#行>1,所有列 tensor([[4, 5, 6],
        [7, 8, 9],
        [0, 0, 0]])
#行<=1,列<=2
 tensor([[1, 2]])
#行>1,列>2
 tensor([[6],
        [9],
        [0]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值