使用YOLOv8实现YOLO格式标签的自动标注

本文介绍了如何使用预训练的YOLOv8模型对图片进行自动标注,包括加载模型权重、进行推理并保存标注结果到.txt文件的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 准备

(1)已经训练好的yolov8权重文件('yolov8/runs/detect/train/weights/best.pt')

(2)需要自动标注的图片文件('/image/*.jpg')

2 开始标注

import torch
from ultralytics import YOLO


class Yolov8Detect():
    def __init__(self, weights):
        cuda = True if torch.cuda.is_available() else False
        self.device = torch.device('cuda:0' if cuda else 'cpu')
        self.detect_model = YOLO(weights)
        self.detect_model.to(self.device)


    def inferences(self, inputs):
        results = self.detect_model(inputs)
        for result in results:
            label_text = []
            boxes = result.boxes
            for box in boxes:
                cat_num = int(box.cls.cpu())
                label_text.append([cat_num, box.xywhn.cpu().numpy()])
            save_path = inputs.replace('jpg', 'txt')
            txt_construct(save_path, label_text=label_text)


def txt_construct(save_path, label_text):
    with open(save_path, 'w') as file:
        file.truncate()
    for label in label_text:
        with open(save_path, 'a') as txt_file:
            label_ = label[0]
            size = label[1][0].tolist()
            size_string = ' '.join(map(str, size))
            result = f'{label_} {size_string}'
            print('result', result)
            txt_file.write(str(result))
            txt_file.write('\n')



if __name__ == '__main__':

    #model_path替换成自己的model路径
    model_path = '/best.pt'
    model = Yolov8Detect(model_path)
    import glob

    #image_path替换成需要自动标注的文件路径
    image_path = glob.glob('/*.jpg')
    for img_path in image_path[:]:
        model.inferences(img_path)

  生成的.txt文件会保存在图片所在文件夹中。

<think>好的,用户想了解YOLOv8标签格式及用法。我需要先整理已有的引用内容,确保回答准确。根据引用1,YOLOv8标签格式每个对象对应一行,包含类别编号和归一化的坐标。引用2提到YOLOv8是无锚点检测,这可能影响标签的处理方式,不需要锚框信息。引用3讨论了修改标签字体颜色,说明标签显示相关的设置可以调整。 用户可能想知道标签文件的结构,比如每一行的具体含义,如何归一化坐标。此外,标签文件的存储位置和命名规则也可能重要。引用中提到了标签与图像同名且同路径,这点需要强调。可能还需要解释归一化的原因,比如适应不同尺寸的图像。 另外,用户可能关心如何生成这些标签文件,是否需要特定工具,比如标注工具如LabelImg。虽然引用里没提,但这是常见做法,可以简要说明。应用场景方面,引用2提到了商品标签识别系统,可以举例说明实际应用。 需要提醒用户注意标签和图像的对齐,以及类别编号的一致性。可能的问题包括路径错误、坐标未归一化等,可以给出示例代码帮助理解。最后,生成的相关问题要覆盖标签生成工具、坐标计算、颜色修改和应用案例,这样用户能进一步探索。</think>### YOLOv8 标签格式及用法详解 #### 1. **标签格式定义** YOLOv8标签格式为**每行一个对象的标注信息**,格式为: $$ \text{class\_id} \quad x\_center \quad y\_center \quad width \quad height $$ 其中: - `class_id`:类别编号(整数,从0开始) - `x_center, y_center`:边界框中心点的归一化坐标(相对于图像宽高的比例,范围$[0,1]$) - `width, height`:边界框宽高的归一化比例(相对于图像宽高)[^1] #### 2. **标签文件规范** - 每个标签文件对应一张图像,文件名与图像文件名相同,扩展名为`.txt`。 - 标签文件与图像文件需放在**同一目录**或按指定路径结构存储(如`images/train/`和`labels/train/`)。 - 示例标签内容: ``` 0 0.45 0.62 0.3 0.4 1 0.12 0.25 0.15 0.2 ``` #### 3. **标签处理注意事项** - **坐标归一化**:需将实际像素坐标转换为相对值。例如,若图像尺寸为$640 \times 480$,中心点坐标为$(320,240)$,则归一化为$(0.5,0.5)$。 - **类别一致性**:训练数据中的类别编号需与模型配置文件(如`dataset.yaml`)中的类别顺序严格一致。 - **无锚点特性**:YOLOv8 采用无锚点检测机制,无需在标签中指定锚框参数[^2]。 #### 4. **标签生成与可视化** - **生成工具**:推荐使用标注工具(如LabelImg、CVAT)导出YOLO格式标签。 - **字体颜色修改**:可通过修改YOLOv8源码中的`plotting.py`文件,调整`text_color`参数实现标签字体颜色自定义(如白色改为黑色)[^3]。 - 可视化代码片段: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') results = model.predict('image.jpg', save=True, conf=0.5) ``` #### 5. **应用场景** - **商品标签识别**:通过规范化标签格式实现高精度商品检测 - **工业质检**:结合归一化坐标处理不同尺寸的零件图像 - **自动驾驶**:兼容KITTI等标准数据集转换
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值