自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 【多传感器融合】python代码模拟实现

传感器的测量数据中通常包含噪声,借助卡尔曼滤波,可以从多个传感器的测量数据中求得最优估计,从而使得数据更加准确和稳定。下面用python模拟实现卡尔曼滤波器建模、传感器数据融合的过程。

2023-12-14 13:52:42 1288 1

原创 《OpenCalib: A Multi-sensor Calibration Toolbox for Autonomous Driving》论文解读

OpenCalib是上海AI实验室开发的一款开源的自动驾驶传感器标定工具箱,其中包含了这一领域的一整套自动驾驶相关标定方法。

2022-07-28 09:53:12 3203

原创 autoware传感器融合相关内容整理

Autoware 感知融合1. 为什么要融合​不同传感器在不同条件下的性能对比图像分辨率高,携带丰富的边缘、语义信息,成本低;但是损失了深度信息,夜间环境会大大降低图像检测性能激光雷达测距准确,不受光线影响;但是波长短,穿透能力不强,远处分辨率太低,成本高毫米波雷达不易受环境影响,测速准确;但是分辨率低、目标识别难度大融合的目的:互为补充、冗余设计2. 感知融合分类按照融合在目标检测过程所处的位置分类:分类特点前融合数据级对融合后的多维综合数据或特征进行感知传

2022-04-09 16:53:21 3043 4

原创 autoware.universe感知模块launch文件和节点调用逻辑图

autoware.universe感知模块launch文件和节点调用逻辑图

2022-03-15 14:39:53 3131 8

原创 《Optimising the selection of samples for robust lidar camera calibration》论文解读

本文是2021年论文《Optimising the selection of samples for robust lidar camera calibration》解读。文章介绍了一种鲁棒性较强的相机和激光雷达联合标定工具,并附有源码和测试数据。

2022-03-08 15:54:19 1544

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除