自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 视网膜多标签数据集-- MuReD2022数据集

每年世界有数百万人被确诊患有视网膜疾病。视网膜疾病的早期诊断可以较好地预防患者恶化为永久性失明。近些年,以深度学习算法为代表的人工智能技术正在积极推动医学影像领域的发展。作者收集了多个视网膜疾病眼底图像数据集,进行严格的数据清洗后得到了MuReD数据集。作者希望该数据集能够帮助相关研究人员开发出基于视网膜眼底图像的视网膜疾病识别模型与软件,帮助医生快速、准确地进行相关疾病诊断与疗效分析。

2025-07-07 16:22:54 830

原创 视网膜血管分割数据集(DRIVE数据集,STARE数据集,REFUGE数据集,CHASE_DB1数据集,DiaRetDB1数据集)

在医学图像处理领域,视网膜图像分析对于眼部疾病的早期诊断与治疗具有举足轻重的意义。随着人工智能技术的蓬勃发展,尤其是深度学习算法在图像分割任务中的广泛应用,高质量的视网膜图像数据集成为推动该领域研究进展的关键要素。这些数据集不仅是训练和优化算法模型的基石,更是衡量算法性能优劣的重要依据。本文聚焦于视网膜图像分割领域,详细介绍 DRIVE、STARE、REFUGE、CHASE_DB1 以及 DiaRetDB1 这几个具有代表性的数据集。

2025-06-26 16:45:48 1547

原创 青光眼数据集(ORIGA、REFUGE、G1020)含模型文件

以下是对青光眼数据集(ORIGA、REFUGE、G1020)的汇总,包含来源、内容、使用场景、获取方式。

2025-05-28 13:53:57 1340

原创 15种水果识别分类数据集Fruit Recognition

本研究所用数据库包含44,406张标注水果图像,采集工作历时6个月完成。每个品类下设子类文件夹(如苹果类含6个子类)多时段采集:不同日期、不同时段重复拍摄同品类。镜面反射与阴影(芒果等3个子类)同果异色(同一品类不同颜色变种)主目录包含15个水果类别文件夹。同色异果(颜色相似的不同品类)图像数量:444406张。猕猴桃3个子类多状态记录。窗户开闭/窗帘开闭组合。自然光与荧光灯混合照明。人工手持造成的部分遮挡。苹果6个子类差异化采集。图像类别:15种水果。实验室灯光开/关组合。

2025-05-23 16:54:29 951

原创 柑橘病虫害图像分类数据集OrangeFruitDataset

图片总数量:8600张,分为三类柑橘溃疡病(Citrus canker):3000 张图片;柑橘黑点病(melanose):2600 张图片;健康柑橘图片(healthy):3000 张图片。

2025-05-23 14:21:08 858

原创 COCO 数据集介绍

拥有超过 330K 张图像,其中 220K 张是有标注的图像,包含 150 万个目标,80 个目标类别如行人、汽车、大象等,91 种材料类别如草、墙、天空等,还有 250,000 个带关键点标注的行人。:COCO 数据集是完全公开的,研究人员可以自由下载和使用,并且可以根据自己的需求对数据进行修改、扩展和再利用,为计算机视觉领域的研究和开发提供了极大的便利,促进了学术交流和技术共享。:图像主要来源于日常生活场景,包括各种环境下的常见物体,如街道、室内、公园等场所的人物、车辆、动物、家具等。

2025-05-21 14:12:28 982

原创 人工智能学习基本框架

线性回归用于预测连续值,逻辑回归用于二分类问题,决策树通过树形结构进行决策,支持向量机寻找最优分类超平面,神经网络模拟人脑神经元结构,能够处理复杂的非线性问题。例如在人脸识别中,CNN 可以学习到人脸的不同特征,如眼睛、鼻子、嘴巴等的位置和形状。:根据不同的任务类型选择合适的评估指标,如分类任务中的准确率、精确率、召回率、F1 值等,回归任务中的均方误差(MSE)、平均绝对误差(MAE)等。:如 BERT、GPT 等,用于自然语言理解和生成任务,如机器翻译、问答系统、文本摘要等。

2025-05-21 13:29:18 358

原创 五种作物病害综合图像数据集:玉米、马铃薯、水稻、小麦与甘蔗

在农业生产里,作物病害严重影响产量与品质。传统病害检测依赖人工,效率与准确性欠佳。随着计算机视觉和深度学习兴起,基于图像的作物病害自动识别成为重要研究方向。本数据集聚焦玉米、马铃薯、水稻、小麦和甘蔗五种作物,涵盖 17 种病害类别及健康状态,共 13324 张图像。图像采集自多个公开数据集,经整理标注,确保多样性与可靠性。其旨在为作物病害识别研究提供丰富资源,助力开展各类深度学习算法研究,提升病害识别准确率与效率,为农业生产智能化提供有力支撑,推动农业可持续发展。

2025-05-21 13:17:39 1395

原创 人工智能机器学习深度学习中著名有用的数据集

涵盖了广泛的声音类别,为声音识别研究提供了丰富的资源,但数据集中的声音可能受到视频背景噪音等因素的干扰,需要进行一定的预处理。:提供了真实世界的交通场景数据,对于自动驾驶技术的研发具有重要意义,但数据的处理和分析需要结合多种传感器信息,具有一定的复杂性。:数据来源于真实的社交媒体,具有较高的现实应用价值,但推文中可能存在一些不规范的语言表达和缩写,需要进行适当的预处理。:标注详细,能够为相关任务提供全面的信息支持,但数据集的规模较大,处理和训练模型需要较高的计算资源。

2025-05-21 10:53:07 1111

原创 IP102 数据集

该数据集主要用于目标分类与检测任务,可帮助研究人员开展害虫控制、细粒度视觉分类和不平衡学习领域的研究。

2025-05-20 14:08:58 1321

原创 常见的 OCT 眼底疾病数据集(OCT2017、Eye OCT Datasets、OCTDL、RetinalOCT_Dataset-C8、RETOUCH和OCTA-500)

本文旨在介绍几个常用的OCT数据集,包括OCT2017、Eye OCT Datasets、OCTDL、RetinalOCT_Dataset-C8、RETOUCH和OCTA-500,分析它们的特点、用途和适用场景,为研究人员在选择合适的数据集时提供参考。:该数据集包含500只眼睛的OCT和OCTA两种模态的三维数据,六种投影图像,四种文本标签(年龄、性别、左右眼、疾病类型)以及两种分割标签(视网膜大血管、无血管区)。:数据来自真实临床场景,分辨率高,适合精细病变分割任务,但样本量较小,需结合数据增强技术。

2025-05-15 17:14:40 3339

原创 糖尿病视网膜病变数据集(Eyepacs, APTOS2019, Messdior, Messdior - 2,e_ophtha)

这五个数据集都为糖尿病视网膜病变的研究提供了重要的数据支持,但在图像来源、数量、分辨率、分级标准以及数据质量等方面存在一定差异,研究人员可根据自身研究目的和需求选择合适的数据集,以推动糖尿病视网膜病变相关研究的发展。

2025-05-14 13:48:42 2178

原创 糖尿病视网膜病变数据集(Eyepacs,APTOS2019,Messdior,Messdior - 2,e_ophtha)

糖尿病视网膜病变(DR)作为全球范围内导致视力损害的首要病因之一,其早期筛查与精准分级对降低失明风险至关重要。然而,传统筛查依赖专业眼科医生的经验判断,存在医疗资源分布不均、基层诊断能力不足等问题。近年来,随着深度学习技术的突破,基于眼底图像的自动化诊断系统成为研究热点,而高质量数据集的开放共享则为算法开发提供了关键支撑。

2025-05-14 11:20:38 1182

原创 农业害虫数据集简介及下载--农作物病害(IP102,Jute_Pest_Datase,农业病虫害对农作物叶子疾病影响)

农业病虫害疾病数据集

2025-05-12 11:39:29 1013 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除