视网膜血管分割数据集(DRIVE数据集,STARE数据集,REFUGE数据集,CHASE_DB1数据集,DiaRetDB1数据集)

目录

前言

一、DRIVE数据集

二、STARE数据集

三、REFUGE数据集

四、CHASE_DB1数据集

四、DiaRetDB1数据集

数据获取

总结


前言

在医学图像处理领域,视网膜图像分析对于眼部疾病的早期诊断与治疗具有举足轻重的意义。随着人工智能技术的蓬勃发展,尤其是深度学习算法在图像分割任务中的广泛应用,高质量的视网膜图像数据集成为推动该领域研究进展的关键要素。这些数据集不仅是训练和优化算法模型的基石,更是衡量算法性能优劣的重要依据。

本文聚焦于视网膜图像分割领域,详细介绍 DRIVE、STARE、REFUGE、CHASE_DB1 以及 DiaRetDB1 这几个具有代表性的数据集。从数据规模与来源、图像特点、标注情况到具体用途,深入剖析每个数据集的特性。旨在为广大科研人员、从业者在开展视网膜图像相关研究,特别是视网膜图像分割算法开发时,提供全面且有价值的参考,助力他们依据自身研究目的和任务需求,精准选择适配的数据集,进而推动视网膜疾病诊断技术的创新与发展。

一、DRIVE数据集

数据规模与来源:包含 40 张视网膜图像,由荷兰鹿特丹伊拉斯姆斯大学医学中心等提供。

图像特点:图像分辨率为 584×565 像素,涵盖正常和有病变的视网膜图像。

标注情况:其中 20 张用于训练,20 张用于测试,并且有专家手动标注的血管分割结果作为参考。

用途:主要用于评估视网膜血管分割算法的性能,是视网膜图像分割领域的经典数据集之一。

筛查人群包括 400 名年龄在 25-90 岁之间的糖尿病受试者。随机选择了 40 张照片,其中 33 张没有显示任何糖尿病视网膜病变的迹象,7 张显示轻度早期糖尿病视网膜病变的迹象。这组 40 张图像被分为训练集和测试集,两者都包含 20 张图像。

test集

原图

血管分割

二、STARE数据集

数据规模与来源:共有 20 幅视网膜图像,由美国南加州大学的医学图像处理实验室提供。

图像特点:图像分辨率为 605×700 像素,包含正常和病变的视网膜图像,病变类型包括糖尿病视网膜病变等。

标注情况:有两位专家分别对图像中的血管进行标注,且标注结果存在一定差异,为算法的评估提供了更具挑战性的环境。通常会使用这两位专家标注的平均值作为参考标准。

用途:用于研究视网膜血管分割以及病变检测算法,帮助研究者评估算法在不同标注情况下的性能表现。

三、REFUGE数据集

数据规模与来源:大规模视网膜眼底图像数据集,由多个机构共同提供,如新加坡国立大学等。包含 1200 张视网膜图像,分为训练集(400 张)、验证集(400 张)和测试集(400 张)。

像特点:图像分辨率较高,包含正常、青光眼患者的视网膜图像。

标注情况:除了图像的青光眼诊断标注外,还包含视盘和视杯的分割标注信息,标注由多位经验丰富的眼科专家完成。

用途:用于青光眼的自动诊断以及视盘和视杯分割等相关研究,是青光眼检测和视网膜结构分割的重要数据集。

 视杯盘分割Mask图像

test和train数据集

标注文档

四、CHASE_DB1数据集

数据规模与来源:由英国伦敦大学学院等机构提供,包含 28 张视网膜图像,其中 14 张用于训练,14 张用于测试。

图像特点:图像分辨率为 999×960 像素,主要用于评估视网膜血管分割算法,图像中包含不同质量和病变情况的视网膜图像。

标注情况:有详细的血管分割标注,标注工作由专业人员完成,可用于算法的训练和评估。

用途:为视网膜血管分割算法的研究提供了一个相对较小但具有代表性的数据集,方便研究者在较小规模数据上快速验证算法的有效性。

原图图像

mask图像

四、DiaRetDB1数据集

数据规模与来源:该数据集由波兰华沙理工大学等提供,包含 137 张视网膜图像,图像来源包括糖尿病患者和非糖尿病患者。

图像特点:包含不同分辨率的视网膜图像,涵盖了多种糖尿病视网膜病变的情况,如微动脉瘤、出血点等病变在图像中均有体现。

标注情况:对图像中的病变区域进行了标注,标注信息包括病变的位置和类型,可用于糖尿病视网膜病变的检测和分割研究。

用途:主要用于糖尿病视网膜病变的研究,帮助研究者开发和评估针对糖尿病视网膜病变的检测和分割算法。

DiaRetDB1 是一个公共数据库,用于评估和基准测试糖尿病视网膜病变检测算法。该数据库包含眼底的数字图像和几种众所周知的糖尿病眼底病变(硬渗出物、软渗出物、微动脉瘤和出血)的专家注释的地面事实。原始图像和原始真实数据均可用。
除了数据之外,我们还提供 Matlab 功能(M 文件),用于读取数据(XML 文件)、融合多个专家的数据并评估检测方法。

数据获取

视网膜血管分割数据集--DRIVE数据集

视网膜血管分割数据集--STARE数据集

视网膜血管分割数据集--REFUGE数据集

视网膜血管分割数据集--CHASE_DB1数据集

视网膜血管分割数据集--DiaRetDB1数据集


总结

这些数据集在视网膜图像分割领域发挥着重要作用,为相关研究和算法开发提供了丰富的数据资源。不同的数据集各有特点,研究者可根据具体的研究目的和任务选择合适的数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值