
检索增强生成
文章平均质量分 81
大模型面试宝典
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
现在国内开源的运用RAG原理的AI应用开发框架有哪些?各自有什么优势和弊端呢?
国内开源的RAG框架各有特色,开发者可以根据具体需求选择合适的框架。例如,LangChain适合需要高度定制化的场景,而Haystack和Dify则更适合高效检索和部署需求。GraphRAG和LlamaIndex则在复杂信息推理和大规模数据处理方面表现突出。原创 2025-05-14 08:48:47 · 307 阅读 · 0 评论 -
AI 为什么会伪造根本不存在的参考文献?
AI伪造参考文献的现象是由其生成式模型的工作机制、过拟合、幻觉现象以及信息存储能力的限制共同导致的。这一现象不仅对学术研究构成了威胁,也引发了对AI伦理和技术可靠性的深刻反思。未来需要通过技术创新和规范管理来解决这一问题,以确保AI在科研领域的健康发展。AI伪造不存在的参考文献的现象,主要源于其生成式人工智能模型(如ChatGPT、文心一言等)的工作原理和技术特性。这些模型通过统计概率生成内容,而非基于真实世界知识库或逻辑推理,从而导致了“幻觉”现象的发生。原创 2025-05-13 22:34:51 · 306 阅读 · 0 评论 -
智能体:四大核心能力详解与技术演进
更为引人注目的是,OpenAI果断出手,发布了人人皆可自建小型Manus的Agent API,这一举措犹如投入平静湖面的巨石,激起层层涟漪,为智能体的普及与应用开辟了全新的可能。今年2月,OpenAI又推出Deep Research,其背后依托端到端训练后的O3模型,能够自主决定何时进行信息搜索、何时整理现有信息、何时展开深度搜索以及何时进行分析总结,整个过程摆脱了对预先设计工作流或人为指定步骤的依赖,实现了高度自主。Agent一词,直译过来为“代理”,在AI的专业语境中,常被译为“智能体”。原创 2025-05-13 22:22:04 · 663 阅读 · 0 评论 -
如何使用 Qwen3 实现 Agentic RAG?
今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。这里是我们的工具栈:CrewAI用于代理编排。Firecrawl用于网络搜索。LightningAI的LitServe用于部署。顶部的视频展示了这一过程。图表显示了我们的Agentic RAG流程:检索代理接受用户查询。它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。写作代理生成响应。接下来,让我们实现并部署它!代码稍后在问题中链接。原创 2025-05-13 21:29:17 · 1216 阅读 · 0 评论 -
RAG 2.0 深入解读
一、Introduction过去一年可谓是RAG元年,检索增强生成技术迅速发展与深刻变革,其创新与应用已深刻重塑了大模型落地的。站在2025年,RAG不仅突破了早期文本处理的局限,更通过多模态融合、混合检索优化和语义鸿沟跨越等突破,开始在各个行业落地。如果把2024之前的RAG称为RAG 1.0,那目前已进入RAG 2.0时代。一个显着的进步是,这一功能引发了争议,但到年中逐渐平息。很多人觉得长上下窗口就够了,传统的检索和RAG会被取代。此外,原创 2025-05-10 22:35:24 · 1181 阅读 · 0 评论 -
分享一下大厂常考的RAG面试题
RAG(检索增强生成)通过整合生成模型和检索技术,利用检索组件从大量数据中筛选出相关信息,进而由生成模型创造回答。首先,RAG 的检索组件被优化,以便在筛选信息时优先考虑那些经过验证的、可靠的来源,从而减少错误信息的传播。其次,生成模型在生成回答前,会对检索到的信息进行深度分析,以确保信息的准确性和减少潜在偏见。这种双阶段流程既利用了检索的精确性,又发挥了生成模型的创造性,特别适用于依赖外部知识生成自然语言的任务。动态检索:RAG 的检索组件会根据对话的进展动态调整检索策略,确保信息的相关性和时效性。原创 2025-05-10 21:48:38 · 587 阅读 · 0 评论