【机器学习理论】2023 Spring Homework 1 Solution

本文详细探讨了在机器学习中,针对高斯密度的负对数似然最小化的优化问题。通过分析证明了在固定方差时目标函数关于均值是凸的,而在固定均值时,关于方差不是凸的。此外,利用Jensen不等式解释了KL散度的性质,并展示了KL散度作为期望的凸函数特性,以及其在最大似然估计和最大熵问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem 1 Solution

  1. Since the log-likelihood function for the Gaussian density is

log⁡p(x)=−(x−μ)22σ2−log⁡(σ)−log⁡(2π)2 \log p(\mathbf{x})=-\frac{(x-\mu)^{2}}{2 \sigma^{2}}-\log (\sigma)-\frac{\log (2 \pi)}{2} logp(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叼辣条闯天涯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值