pytorch中repeat和repeat_interleave

本文详细介绍了PyTorch中`repeat`和`repeat_interleave`两个函数的区别。`repeat`函数会将张量在指定维度上复制并拼接,而`repeat_interleave`则会在某一维度上将元素重复,使得相邻元素相同。通过示例代码展示了两者的不同效果,帮助理解这两个操作在实际应用中的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

repeat的参数是每一个维度上重复的次数,repeat_interleave的参数是重复的次数和维度。
repeat相当于将该张量复制,然后在某一维度concat起来,而repeat_interleave是将张量中的元素沿某一维度复制n次,即复制后的张量沿该维度相邻的n个元素是相同的。
在这里插入图片描述
例子:

a = np.arange(0, 10)
a = a.reshape(2, -1)
a = torch.from_numpy(a)
b = a.repeat(2, 1)
print(b)
c = a.repeat_interleave(2, 1)
print(c)
d = a.repeat(1, 2)
print(d)
e = a.repeat_interleave(2, 0)
print(e)

在这里插入图片描述

repeat_interleave函数是PyTorch中的一个函数,用于重复张量的元素。它的函数原型为torch.repeat_interleave(input, repeats, dim=None)。其中,input是输入张量,repeats是每个元素的重复次数,dim是需要重复的维度。默认情况下,函数会将输入张量展平为向量,然后将每个元素重复repeats次,并返回重复后的张量。如果传入的是多维张量,可以通过指定dim参数来指定需要重复的维度。举例来说,如果输入张量x为\[1, 2, 3\],调用x.repeat_interleave(2)会返回tensor(\[1, 1, 2, 2, 3, 3\]),即每个元素重复两次。如果输入张量y为\[\[1, 2\], \[3, 4\]\],调用torch.repeat_interleave(y, 2)会返回tensor(\[1, 1, 2, 2, 3, 3, 4, 4\]),即将y展平后的每个元素重复两次。如果需要指定不同元素重复不同次数,可以传入一个与输入张量维度相同的张量作为repeats参数。例如,调用torch.repeat_interleave(y, torch.tensor(\[1, 2\]), dim=0)会返回tensor(\[\[1, 2\], \[3, 4\], \[3, 4\]\]),即第一行重复1次,第二行重复2次。\[1\]\[2\]在PyTorch中,还有一个repeat函数可以用来重复张量的元素。例如,调用x.repeat(3, 2, 1)会将一维度的x向量扩展到三维,重复次数分别为3、2、1。\[3\] #### 引用[.reference_title] - *1* *2* [【PyTorchrepeat_interleave()方法详解](https://blog.csdn.net/weixin_45261707/article/details/119187799)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Pytorch中的repeat以及repeat_interleave用法](https://blog.csdn.net/starlet_kiss/article/details/125718922)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值